Watcom FORTRAN 77 Tools

User’s Guide

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

Preface

The Watcom FORTRAN 77 Tools User’ s Guide describes how to use Watcom'’ s software
development tools on Intel 80x86-based personal computers with DOS, Windows, Windows
NT, or OS/2. The Watcom FORTRAN 77 Tools User’ s Guide describes the following tools:

 compile and link utility

* assembler

* object file library manager

* object file disassembler

« far call optimization utility

* patch utility

* executablefile strip utility

» make utility

« touch utility

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCII text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on avariety of operating systems, interprets the tags to format the text into aform
such asyou see here. Writers can produce output for avariety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result istype-set quality copy containing
integrated text and graphics.

September, 2000.

Trademarks Used in this Manual

0S/2isatrademark of International Business Machines Corp. IBM is aregistered trademark
of International Business Machines Corp.

Intel are registered trademarks of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT isatrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.

Phar Lap, 286|DOS-Extender, and 386|DOS-Extender are trademarks of Phar Lap Software,
Inc.

OQNX isaregistered trademark of QNX Software Systems Ltd.
UNIX isaregistered trademark of UNIX System Laboratories, Inc.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

The Watcom Compile and Link ULITITYoooooieii e

1 The Watcom FORTRAN 77 Compile and Link Utilityc.ccccoeoieineineicnenneenn

1.1 WFL/WFL386 Command Line Format

1.2 Watcom Compile and Link Options SUMMaryccoceevennennienenenenenenns

1.3 WFL/WFL386 Environment Variables

1.4 WFL/WFL386 Command Line EXamplescccocevevrreerereereeeeceseeecenees

The WaCOM ASSEMDIES ...ttt et s st e e s s e e ebe e s s e ba e e s sab e e s saeessbeeesanbeseans

2 The WatCOmM ASSEMBIET ...ttt sar s s ab e e s sab e e s s bn e s sanneas
P2 I 1 g 11 (0o [0 1o o SRR

2.2 Assembly Directives and Opcodes

2.3 Unsupported DIFECLIVESccoviireiiriiieiireeiesieeree e
2.4 Watcom Assembler Diagnostic MESSAZEScccoevererererenenineneee e

ODJECE FIHE ULHTITIES ..vviieieeecerise sttt

3 The Watcom Library MaNagETccccoererierieneeeeinene st
L INEOTUCTION ..ttt
3.2 The Watcom Library Manager Command Linecc.cccveeveenniencneneens

3.3 Adding Modulesto aLibrary File
3.4 Deleting Modules from a Library File
3.5 Replacing Modulesin aLibrary File

3.6 Extracting aModule from a Library File
3.7 Creating IMpOort LIiDrari€Sccovevveeinieie s
3.8 Creating Import Library Entries
3.9 Commands from a File or Environment Variableccocooeiiiiinininins

3.10 Watcom Library Manager Options

3.10.1 Suppress Creation of Backup File-"b" Optioncccceerenene
3.10.2 Case Sensitive Symbol Names- "¢" Optionccccvevverieennnes
3.10.3 Specify Output Directory - "d" Optioncccccveverenenennennenens
3.10.4 Specify Output Format - "f" OptioNcccoceveerriereereeneereens
3.10.5 Generating IMports - "i" OPtioNcccoceveerriereeree e
3.10.6 Creating aListing File - "I" Optioncccccevveevieveveve e
3.10.7 Display C++ Mangled Names - "m" Optionccccecvevvvivrereenenne
3.10.8 Always Create aNew Library - "n" Optionccccecvevevieveerennnnn
3.10.9 Specifying an Output File Name - "0" Optionccccccveererennne
3.10.10 Specifying aLibrary Record Size- "p" Optioncccceeeeennene

3.10.11 Operate Quietly -

q

Option

QW hrhww

13

15
15
17
21
21

31

33
33
33
35
36
37
37
38
39
39
40
40
40
40
41
41
42
43
43

ER&

Table of Contents

3.10.12 Strip Line Number Records - "S" Optionc.ccocvevenereereeeenee
3.10.13 Trim Module Name - "t" OptioNccccocerererinene e
3.10.14 Operate Verbosaly - "v" OptioNcccceeveiereieneiesee e
3.10.15 Explode Library File - "X" Optioncccccevrvereiereiereeeneerieeens
.11 Librarian Error MESSAgEScccereeeerieerieirieesieesiesesie e snenes

4 The Object File DIisassemMbIErcoocierecceececere e eneas

4.1 Introduction

4.2 Changing the Internal Label Character - "i=<char>"ccccooevvivvevenne
4.3 The Assembly Format Option - "a"ccooeririnirereres e
4.4 The External Symbols Option - "€" ..ot
4.5 The No Instruction Name Pseudonyms Option - "fp"cccocveniniienenenee
4.6 The No Register Name Pseudonyms Option - "fr"ccccoeevevneineneneenes
4.7 The Alternate Addressing Form Option - "fi"cccveereiniineininee
4.8 The Uppercase Instructions/Registers Option - "fu"ccoeevvivenneninene
4.9 TheListing Option - "[[=<liSt_fil&>]" ..o
4.10 The Public Symbols Option - "P" ..eceeeeeeerere e
4.11 Retain C++ Mangled Names - "M" ..o
4.12 The Source Option - "g[=<source file>]" ...

4.13 An Example

5 Optimization of Far Calls

5.1 Far Call Optimizations for Non-Watcom Object Modulesccccvveeee.
5.1.1 The Watcom Far Call Optimization Enabling Utility

Executable Image Utilities

6 The Watcom Patch Utility
6.1 Introduction
6.2 Applying a Patch

6.3 DiagNOStiC MESSATESocviiteeeiieieieieeeeer e eie sttt see st et e e e e eneas

7 The Watcom Strip Utility
7.1 Introduction

7.2 The Watcom Strip Utility Command Linecccooevevrinnennienecereeseeee
7.3 Strip Utility MESSAGES ...ocvvvvvieeiiirieiiesiesie et eee ettt s snenen

The Make/Touch Utilities

8 The Watcom Make Utility

Vi

45
45
45
46

49
49
50
50
51
51
52
52
52
52

GELR

59
60
60

63

65
65
65
66

69
69
70
71
73

75

Table of Contents

B.LINIrOTUCTION ...vnetiececieete et 75
8.2 Watcom Make REFEIENCEccooiiiiiiiii e 75
8.2.1 Watcom Make Command Line Formatcoceeeervnvnicnccnnnenn, 75

8.2.2 Watcom Make Options SUMMETYcccoeereeerieereeniee e 76

8.2.3 Command Line OPLioNScccerererereriririeesieesie e 77

8.2.4 SPECIAl MBEIOS ...ttt 84

8.3 Dependency DECIarationscccccveeerieresiseseseeseenieseeseeeeeseeeesesesnesresees 85
8.4 MUItiple DEPENTENLSocveieieseeeeeeee e et eneas 86
8.5 MUILIPIE TAIGELS ...cveeeeeieececee et re s resnen 87
8.6 MUIIPIE RUIES ... e 88
8.7 Automatic Dependency Detection (AUTODEPEND)ccccocvvinineneniennn. Q0
8.8 Targets Without Any Dependents (.SYMBOLIC)ccoooviieieneinencneee 91
8.9 Preserving Targets (PRECIOUS) ..o 93
8.10 Ignoring Return Codes (IGNORE)ccccviiriniriniriiee e 94
8.11 Erasing Targets After Error (ERASE) ... 95
8.12 Preserving Targets After Error ((HOLD)oovivevivnereeeeeee e 95
8.13 Suppressing Termina Output ((SILENT) ...cooeveveeeeee e 96
B.LA MBEIOSeveeceeireet ettt sttt et 97
.15 IMPLICIE RUIES ...t s 106
8.16 Double Colon EXPlICit RUIESccooiiiiieeeeeee e 117
8.17 Preprocessing DITECHIVES ..ot 118
8.17. L FIEINCIUSION ..ottt e 118
8.17.2 Conditional ProCESSINGcccvvreeriirereirieirieesiee et 122

8.17.3 Loading Dynamic Link Librariescccceoveeneienencnenenenennene 127

8.18 CommMand LiSt DIFECLIVEScooeeeeeirireeesiese e 129
. LI MAKEINIT FIlE oieeeeeeeeeeeeee st nne s 131
8.20 Command LiSt EXECULIONccveveeiiirerreiiirerrcrce e 131
8.21 Compatibility Between Watcom Make and UNIX Makecccccvvcveenenee, 138
8.22 Watcom Make DiagnostiC MESSAgESccceeeveereereeieeieeeereniesesesressessessees 139
9 ThE TOUCH ULHITY .ot s s 143
1S 1 g1 oo (1 Tox i o) o [OOSR 143
9.2 WTOUCH OPEIELION ...t sesesiese st s s sees 144

vii

viii

The Watcom Compile and Link
Utility

The Watcom Compile and Link Utility

1 The Watcom FORTRAN 77 Compile and
Link Utility

The Watcom FORTRAN 77 Compile and Link Utility is designed for generating applications,
simply and quickly, using asingle command line. On the command line, you can list source
file names as well as object file names. Source files are compiled; object files and libraries

are simply included in the link phase. Options can be passed on to both the compiler and
linker.

1.1 WFL/WFL386 Command Line Format

The format of the command lineis:

WEFL [files] [options]
WFL 386 [files] [optiong]

The square brackets [] denote items which are optional.

WFL is the name of the Watcom Compile and Link utility that invokes the 16-bit
compiler.

WFL386 isthe name of the Watcom Compile and Link utility that invokes the 32-bit
compiler.

The files and options may be specified in any order. The Watcom Compile and Link utility
uses the extension of the file name to determineif it is a sourcefile, an object file, or alibrary
file. Fileswith extensions of "OBJ"' and "LIB" are assumed to be object files and library files
respectively. Fileswith any other extension, including none at al, are assumed to be
FORTRAN 77 source files and will be compiled. Pattern matching characters ("*" and "?")

may be used in the file specifications. If no file extension is specified for afile name then
"FOR" is assumed.

Options are prefixed with aslash (/) or adash (-) and may be specified in any order. Options
can include any of the Watcom F77 compiler options plus some additional options specific to

WFL/WFL386 Command Line Format 3

The Watcom Compile and Link Utility

the Watcom Compile and Link utility. Certain options can include a"NO" prefix to disable
an option. A summary of optionsis displayed on the screen by simply entering the "WFL" or
"WFL386" command with no arguments.

1.2 Watcom Compile and Link Options Summary

General options:

C
Y

Compiler options:

Description:

compile the files only, do not link them
ignore the WFL/WFL 386 environment variable

Description:

0 (16-bit only) assume 8088/8086 processor

1 (16-bit only) assume 188/186 processor

2 (16-bit only) assume 286 processor

3 assume 386 processor

4 assume 486 processor

5 assume Pentium processor

6 assume Pentium Pro processor

[NOJALign align COMMON segments

[NOJAUtomatic all local variables on the stack

BD (32-bit only) dynamic link library

BM (32-bit only) multithread application

[NO]BOunds generate subscript bounds checking code

BW (32-bit only) default windowed application

[NOJCC carriage control recognition reguested for output devices such asthe
console

CHInese Chinese character set

[NO]COde constants in code segment

D1 include line # debugging information

D2 include full debugging information

[NO]DEBug perform run-time checking

DEFine=<macro>
[NO]DEPendency

[NO]DEScriptor
Dlsk

define macro

generate file dependencies

pass character arguments using string descriptor
write listing file to disk

DT=<size> set data threshold
[NOJERrorfile generate an error file
[NOJEXPIicit declare type of all symbols

Watcom Compile and Link Options Summary

The Watcom FORTRAN 77 Compile and Link Utility

[NOJEXtensions
[NOJEZ
FO=<obj_default>
[NOJFORmat
FPC

FPD

FPI

FPI187

FPR

FP2

FP3

FP5

FP6

[NOJF Sfloats
[NO]|GSfloats
HC

HD

HW
[NO]INCList
INCPath=[d:]path
[NO]I Promote
Japanese
KOrean
[NOJLFwithff
[NOJLIBinfo
[NOJLI St
[NO]MANgle
MC

MF

MH

ML

MM

MS

OB

OBP

oC

oD

ODO

OF

OH

ol

OK

issue extension messages

(32-bit only) Easy OMF-386 object files

set default object file name

relax format type checking

generate calls to floating-point library

enable generation of Pentium FDIV bug check code
generate inline 80x87 instructions with emulation
generate inline 80x87 instructions
floating-point backward compatibility

generate inline 80x87 instructions

generate inline 80387 instructions

optimize floating-point for Pentium

optimize floating-point for Pentium Pro

FS not fixed

GSnot fixed

Codeview debugging information

DWARF debugging information

Watcom debugging information

write content of INCLUDE filesto listing
[d:]path... path for INCLUDE files

promote INTEGER* 1 and INTEGER* 2 arguments to INTEGER* 4
Japanese character set

Korean character set

LFwith FF

include default library information in object file
generate alisting file

mangle COMMON segment names

(32-bit only) compact memory model

(32-bit only) flat memory model

(16-bit only) huge memory model

large memory model

medium memory model

(32-bit only) small memory model

(32-hit only) base pointer optimizations

branch prediction

do not convert "cal" followed by "ret" to "jmp"
disable optimizations

DO-variables do not overflow

always generate a stack frame

enable repeated optimizations (longer compiles)
generate statement functionsin-line

enable control flow prologues and epilogues

Watcom Compile and Link Options Summary 5

The Watcom Compile and Link Utility

oL
OL+
oM
ON
OoP
OR
oS
oT
OoX

PRint
[NO]JQuiet
[NO]Reference
[NOJRESource
[NO]SAve
[NOJSsC
[NO]SEpcomma
[NOJSG
[NOJSHort
[NOJSR
[NO]SSfloats
[NO]STack
[NO]SYntax
[NOJTErminal
[NO]TRace
TYpe
[NOJWArnings
[NOJwILd
[NOJWIndows
[NO]XFloat
[NO]XLine

Linker options:

perform loop optimizations

perform loop optimizations with loop unrolling
generate floating-point 80x87 math instructionsin-line
numeric optimizations

precision optimizations

instruction scheduling

optimize for space

optimize for time

equivaent to OBP, ODO, OlI, OK, OL, OM, OR, and OT (16-hit) or OB,
OBP, ODO, Ol, OK, OL, OM, OR, and OT (32-hit)
write listing file to printer

operate quietly

issue unreferenced warning

messages in resource file

SAVE local variables

(32-bit only) stack calling convention

allow comma separator in formatted input

(32-bit only) automatic stack growing

set default INTEGER/LOGICAL sizeto 2/1 bytes
save/restore segment registers

(16-bit only) SSis not default data segment
generate stack checking code

syntax check only

messages to terminal

generate code for run-time traceback

writelisting file to terminal

i Ssue warning messages

relax wild branch checking

(16-bit only) compile code for Windows

extend floating-point precision

extend line length to 132

Description:

FD[=<directive file>] keep directivefile and, optionaly, rename it (default nameis

FE=<executable>
Fl=<fn>
FM[=<map _file>]
K=<stack_size>
LP

LR

" WFL__.LNK").

name executable file

include additional directivefile

generate map file and, optionally, name it

set stack size

(16-bit only) create an OS/2 protected-mode program
(16-bit only) create a DOS real-mode program

Watcom Compile and Link Options Summary

The Watcom FORTRAN 77 Compile and Link Utility

L=<system _name> link aprogram for the specified system. Among the supported systems

are:

286

386

ADS

COM

DOS
DOSAG
DOSAGNZ

EADI

FADI
NETWARE
NOVELL

NT
NT_DLL
NT_WIN
0s2

0S2V2
0S2V2_PM
PHARLAP
QNX
QNIX386
TNT
WIN386
WING5
WINDOWS
WINDOWS |
X32R
X32RV

X32S
X325V

Watco

16-bit DOS executables (synonym for "DOS") under DOS
and NT hosted platforms; 16-bit OS/2 executables
(synonym for "OS2") under 32-bit 0OS/2 hosted 0S/2
session.

32-bit DOS executables (synonym for "DOSAG") under
DOS; 32-hit NT character-mode executables (synonym for
"NT") under Windows NT; 32-bit OS/2 executables
(synonym for "OS2V2") under 32-bit OS/2 hosted OS/2
session.

32-bit AutoCAD ADS executables

16-bit DOS"COM" files

16-bit DOS executables

32-bit Tenberry Software DOS Extender executables
32-bit Tenberry Software DOS Extender non-zero base
executables

32-bit AutoCAD ADI executables (emulation)

32-bit AutoCAD ADI executables (floating-point)

32-bit Novell NetWare 386 NLMs

32-bit Novell NetWare 386 NLMs (synonym for
NETWARE)

32-bit Windows NT character-mode executables

32-bit Windows NT DLLs

32-bit Windows NT windowed executables

16-bit 0S/2 V1.x executables

32-bit OS/2 executables

32-bit OS/2 PM executables

32-hit PharLap DOS Extender executables

16-bit QNX executables

32-bit QNX executables

32-bit Phar Lap TNT DOS-style executable

32-bit extended Windows 3.x executables/DLLs

32-bit Windows 95 executables/DLLs

16-bit Windows executables

DLL 16-bit Windows Dynamic Link Libraries

32-hit FlashTek (register calling convention) executables
32-bit FlashTek Virtual Memory (register calling
convention) executables

32-bit FlashTek (stack calling convention) executables
32-bit FlashTek Virtual Memory (stack calling convention)
executables

m Compile and Link Options Summary 7

The Watcom Compile and Link Utility

8

These names are among the systems identified in the Watcom Linker
initialization file, "WLSY STEM.LNK". The Watcom Linker
"SYSTEM" directives, found in thisfile, are used to specify default link
options for particular (operating) systems. Users can augment the
Watcom Linker initialization file with their own system definitions and
these may be specified as an argument to the "|=" option. The
"system_name" specified in the "I1=" option isused to create a"SY STEM
system_name" Watcom Linker directive when linking the application.

"<linker directives>" specify additional linker directives

A summary of the option defaults follows:

0
5
ALign

NOAUtomatic

NOBOunds
NOCC
NOCQOde
NODEBug

DEPendency

DEScriptor
DT=256
ERrorfile
NOEXPIlicit

NOEXtensions

NOEZ
NOFORmat
FPI

FP2

FP3
NOFPD
FSfloats
NOF Sfloats
GSfloats
NOINCList
NOI Promote
NOL Fwithff
LIBinfo
NOLI St
NOMAnNgle
ML

16-bit only
32-bit only

32-bit only

16-hit only
32-bit only

all but flat memory model
flat memory model only

16-bit only

Watcom Compile and Link Options Summary

The Watcom FORTRAN 77 Compile and Link Utility

MF 32-bit only
NOQuiet

Reference

NORESource

NOSAve

NOSC 32-bit only
NOSEpcomma

NOSG 32-bit only
NOSHort

NOSR

NOSSfloats 16-bit only
NOSTack

NOSYntax

TErminal

NOTRace

WArnings

NOwWILd

NOWI ndows 16-hit only
NOXFloat

NOXLine

1.3 WFL/WFL386 Environment Variables

The WFL environment variable can be used to specify commonly used WFL options. The
WL 386 environment variable can be used to specify commonly used WL 386 options.
These options are processed before options specified on the command line.

Example:
C>set wfl=/dl1 /ot

C>set wfl 386=/d1 /ot

The above example defines the default options to be "d1" (include line number debugging
information in the object file), and "ot" (favour time optimizations over size optimizations).

Whenever you wish to specify an option that requires the use of an "=" character, you can use
the "#" character initsplace. Thisisrequired by the syntax of the "SET" command.

Once the appropriate environment variable has been defined, those options listed become the
default each time the WFL or WFL386 command is used.

WEFL/WFL386 Environment Variables 9

The Watcom Compile and Link Utility

The WFL environment variable is used by WFL only. The WFL 386 environment variableis
used by WFL 386 only. Both WFL and WFL 386 pass the relevant options to the Watcom F77
compiler and linker. This environment variable is not examined by the Watcom F77 compiler
or the linker when invoked directly.

Hint: If you are running DOS and you use the same WFL or WFL 386 options al the
time, you may find it handy to place the "SET WFL" or "SET WFL 386" command in your
DOS system initialization file, AUTOEXEC. BAT. If you are running OS/2 and you use
the same WFL or WFL 386 options al the time, you may find it handy to place the "SET
WFL" or "SET WFL386" command in your OS/2 system initiaization file,

CONFI G SYS.

1.4 WFL/WFL386 Command Line Examples

For most small applications, the WFL or WFL 386 command will suffice. We have only
scratched the surface in describing the capabilities of the WFL and WFL386 commands. The
following examples describe the WFL and WFL386 commands in more detail.

Suppose that your application is contained in three files called APDEMO. FOR,
APUTI LS. FOR, and APDATA. FOR. We can compile and link all three fileswith one
command.

Example 1:
Cwil /d2 apdeno. for aputils.for apdata.for
Cwfl 386 /d2 apdeno. for aputils.for apdata.for

The executable program will be stored in APDEMO. EXE since APDEMO appeared first in the
list. Each of the three filesis compiled with the "d2" debug option. Debugging information is
included in the executablefile.

We can issue asimpler command if the current directory contains only our three FORTRAN
77 source files.

Example 2:
Cwil /d2 *.for
Cw 1386 /d2 *.for

WFL or WFL386 will locate all files with the ".for" filename extension and compile each of
them. The name of the executable file will depend on which of the FORTRAN 77 source files

10 WFL/WFL386 Command Line Examples

The Watcom FORTRAN 77 Compile and Link Utility

isfound first. Sincethisisasomewhat haphazard approach to naming the executable file,
WFL and WFL 386 have an option, "fe", which will allow you to specify the name to be used.

Example 3:
Cwil /d2 /fe=apdenmp *.for
Cwil 386 /d2 /fe=apdeno *.for

By using the "fe" option, the executable file will always be called APDEMO. EXE regardless of
the order of the FORTRAN 77 source filesin the directory.

If the directory contains other FORTRAN 77 source files which are not part of the application
then other tricks may be used to identify a subset of the files to be compiled and linked.

Example 4:
Cwil /d2 /fe=apdenp ap*.for
Cwfl 386 /d2 /fe=apdeno ap*.for

Here we compile only those FORTRAN 77 source files that begin with the letters "ap".

In our examples, we have recompiled all the source files each time. In general, we will only
compile one of them and include the object code for the others.

Example 5:
Cwil /d2 /fe=apdenp aputils.for ap*.obj
Cwil 386 /d2 /fe=apdenp aputils.for ap*.obj

The source file APUTI LS. FORisrecompiled and APDEMO. OBJ and APDATA. OBJ are
included when linking the application. The".obj" filename extension indicates that thisfile
need not be compiled.

Example 6:
Cwil /fe=denp *.for utility. obj
Cwil 386 /fe=denp *.for utility. obj

All of the FORTRAN 77 source files in the current directory are compiled and then linked
with UTI LI TY. OBJ to generate DEMO. EXE.

Example 7:
Csset wil=/mm/dl /op /k=4096
Cwl /fe=grdemp gr*.for graph.lib /fd=grdeno

C>set wfl 386=/d1l /op /k=4096
Cwfl 386 /fe=grdenp gr*.for graph.lib /fd=grdeno

WFL/WFL386 Command Line Examples 11

The Watcom Compile and Link Utility

All FORTRAN 77 source files beginning with the letters "gr" are compiled and then linked
with GRAPH. LI B to generate GRDEMO. EXE which uses a4K stack. The temporary linker
directivefilethat is created by WFL or WFL 386 will be kept and renamed to GRDEMO. LNK.

Example 8:
C>set |ibos2=c:\watcom|ib286\0s2;c:\os2
C>set lib=c:\watconm | i b286\dos
Csset wil=/mm/Ip
Cwil grdenmpl \watcom | i b286\ 0s2\ graphp. obj phapi.lib

The file GRDEMOL is compiled for the medium memory model and then linked with
GRAPHP. OBJ and PHAPI . LI B to generate GRDEMOL. EXE which isto be used with Phar
Lap’'s 286 DOS Extender. The "Ip" option indicates that an OS/2 format executableisto be
created. Thefile GRAPHP. OBJ inthe directory "\WATCOM\LIB286\0S2" contains specia
initialization code for Phar Lap’'s 286 DOS Extender. Thefile PHAPI . LI Bispart of the
Phar Lap 286 DOS Extender package. The L1BOS2 environment variable must include the
location of the OS/2 libraries and the L I B environment variable must include the location of
the DOS libraries (in order to locate GRAPH. LI B). The LIBOS2 environment variable must
aso include the location of the OS/2 file DOSCALLS. LI Bwhichisusualy "C:\OS2".

For more complex applications, you should use the "Make" utility.

12 WFL/WFL386 Command Line Examples

The Watcom Assembler

The Watcom Assembler

14

2 The Watcom Assembler

2.1 Introduction

This chapter describes the Watcom Assembler. It takes as input an assembler source file (a
file with extension ".asm") and produces, as output, an object file.

The Watcom Assembler command line syntax is the following.

WASM [options] [d:][path]filename].ext] [options] [@env_var]

The square brackets [] denote items which are optional.
WASM is the name of the Watcom Assembler.

d: is an optional drive specification such as"A:", "B:", etc. If not specified, the
default drive is assumed.

path isan optional path specification such as "\PROGRAMS\ASM\". If not
specified, the current directory is assumed.

filename isthe file name of the assembler source file to be assembled.
ext is the file extension of the assembler source file to be assembled. If omitted, a
file extension of ".asm" is assumed. If the period "." is specified but not the

extension, thefile is assumed to have no file extension.

options isalist of valid options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

The options supported by the Watcom Assembler are:

Introduction 15

The Watcom Assembler

16

{0,1,2,3,4,5H{p}r,s}
0 same as ".8086"
1 sameas ".186"
2{p} same as ".286" or ".286p"
3Ap} sameas".386" or ".386p" (aso defines"_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
4p} sameas".486" or ".486p" (aso defines”_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
5{p} same as ".586" or ".586p" (also defines”_ 386 " and changesthe
default USE attribute of segments from "USE16" to "USE32")
p protect mode
addr defines"__REGISTER__"
adds defines”__STACK__"
Example:
/2 /3p [4pr / 5p
bt=<os> defines" __<os> " and checksthe "<os> INCLUDE" environment variable for
include files
c do not output OMF COMENT records that allow WDISASM to figure out when

data bytes have been placed in a code segment

d<name>[=text] define text macro

dl line number debugging support

e stop reading assembler source file at END directive. Normally, anything
following the END directive will cause an error.

e<number> set error limit number

fe=<file_name> set error file name

fo=<file_name> set object file name

fi=<file_name> force <file_name> to be included

fpc same as ".no87"

fpi inline 80x87 instructions with emulation

fpi87 inline 80x87 instructions

fpo same as ".8087"

fp2 same as".287" or ".287p"

fp3 same as".387" or ".387p"

fp5 sameas ".587" or ".587p"

i=<directory> add directory to list of include directories
jors force signed types to be used for signed values

m{t,s,m,c,l,h,f} memory model: (Tiny, Small, Medium, Compact, Large, Huge, Flat)

Introduction

The Watcom Assembler

-mt Same as".model tiny"

-ms Same as ".model small”
-mm Same as".model medium”
-mc Same as".model compact"
-ml Same as".model large"
-mh Same as ".model huge"
-mf Same as ".model flat"

Each of the model directives also defines”__<model>_ " (e.g., ".model small"
defines” SMALL__"). They also affect whether something like "foo proc" is
considered a"far" or "near" procedure.

nd=<name> set data segment name

nm=<name> set module name

nt=<name> set hame of text segment

o] allow C form of octal constants
zqor q operate quietly

? orh print this message
w<number> set warning level number

we treat all warnings as errors

2.2 Assembly Directives and Opcodes

It is not the intention of this chapter to describe assembly-language programming in any
detail. Y ou should consult abook that deals with thistopic. However, we present an
alphabetically ordered list of the directives, opcodes and register names that are recognized by
the assembler.

Assembly Directives and Opcodes 17

The Watcom Assembler

. 186

. 287

. 486

. 8086
aam
add
alias
ar pl
basi c
bp
bswap
bts
cal |
cbw
clc
cnt
cnpsd

. code
conpact
cr0
.cref
cX

. dat a?
df

d

dr0
dr 6
dup
eax
ecx

el sei f
ends
equ
.errdef
.erridn
.errnz
esp
extern
f abs
.fardata

. 286

. 386

. 486p

. 8087
aas
addr
align
assune
bh

. br eak
bt

bx
cal | f
cdq

cld

cnp
cnpsw
comm

. const
cr2

cs

daa

db

dh

. dosseg
drl

dr7

dw

ebp

ed

end

. endw
equ2
.errdif
.erridni
error
even
ext er ndef
f add
.fardat a?

18 Assembly Directives and Opcodes

casenap
ch

cl

cnps
cnpxchg
conment
.conti nue
cr3

cwd

das

dd

d

dp

dr2

ds

dwor d
ebx

edx
endi f
ent er
.err
.errdifi
.errnb
es

.exit
extrn

f addp
farstack

. 286p
. 387

. 586p
aad
adc

a

and
ax
bound
bsr
btr

c
catstr
c
clts
cnpsb
cnpxchg8b
conmon
cpuid
crd
cwde
.data
dec
di v
dq
dr3

dt

dx
echo
el se
endp
€q
.errb
.erre
. errndef
esi
export
f 2xml
far
fbld

The Watcom Assembler

fbstp
fconp
fdi si
fdivrp
ficom
fild
fist
flat

fl denv
fldl2t
fldz

f ndi si
fnrstor
fnsaved
f nst envd
forc
fprenml
frstord
f saved
fsin
fstcw
fstp

f subr
fuconp
f xam
fyl 2xpl
gs

hl t

ifl

i fdif

i fidni

i mul

i ncludelib
i nsw

i nvl pg
irp

j be

j ecxz

jle

j nae

j ne

jnle

jnz

J po

| ahf

e

| engt hof

| gdt

fchs

f conpp
fdiv

f eni
ficonp
fimul
fistp
fld

fl denvd
fldlg2
f mul

f neni
fnrstord
f nsavew
f nst envw
fortran
f ptan
frstorw
f savew
f si ncos
fstenv
fstsw
fsubrp
fucompp
fxch

ge

gt

huge
if2
ifdifi

i fnb

in

i ns

i nt

i nvoke

fcl ex

f cos
fdivp
ffree
fidiv
fincstp
fisub
fldil

fl denvw
fldln2
frul p
fninit
fnrstorw
fnstcw
f nst sw
f pat an
frndi nt
fs
fscal e
fsqrt

f st envd
fsub
ftst
fwait
fxtract
gl obal
hi gh
idiv
ifb

ife

i f ndef

i nc

i nsb
into
iret

j ae

j cxz

i ge

j mpf

j nbe

j nge
np

Ip

jz

| ar ge

| eave
.1 fcond
lidt

fcom
fdecstp
fdivr

fi add
fidivr
finit
fisubr
fldcw
fldl2e
fI dpi

f ncl ex
f nop

f nsave
f nst env
for
fprem
frstor
f save
fset pm
f st

f st envw
fsubp
fucom
fwor d
fyl 2x
group
hi ghwor d
i f

i fdef

i fidn

i gnore
i ncl ude
i nsd

i nvd
iretd
jb

je

jl

j na

j nc

j nl

j ns

J p€e

| abel

| ds

[ength
I fs
st

Assembly Directives and Opcodes

19

The Watcom Assembler

.listall
Il dt

| ods

| oop

| oopz

| sl
macr o
nod
novsb
novzXx
near

. nhocr ef
not hi ng
or

out

out sw
popa
popf d
ptr
pusha
pushfd
rcl
readonl y
. repeat
ret

ror
.sall
scas
sdwor d
set a
setc
set |
set nb
set ng
set no
seto
sets
shl
shrd

si zeof
sp
.startup
st

st osw
sub

t est
tiny
tr6

20 Unsupported Directives

Jdistif
| nBW

| odsb

| oope

| ow

| ss
mask

. nodel
novsd
mul
near st ack
. hol i st
of f set
org
outs
par a
popad
private
public
pushad
pwor d
rcr
record
repne
retf
rsm
sar
scasb
seg

set ae
sete
setle
set nbe
set nge
setnp
setp
setz
shl d

S

sl dt

SS

stc

st os
str
swor d

t extequ
tr3
tr7

.listmacro
| ocal

| odsd

| oopne
| ownord
It

medi um
nov
NOVSW
name
neg

nop
opattr
os_dos
out sb
pascal
popcont ext
proc
pur ge
pushcont ext
gword
rdmsr
rep
repnz
retn
sahf
sbb
scasd
segnent
setb
setg
set na
set nc
set nl
set ns
set pe

. sfcond
short

si dt
smal |

st

std

st osb
struc
syscal |
.tfcond
tr4

t ypedef

.listmacroal |
| ock
| odsw
| oopnz
| rof fset
ltr
nenory
novs
NDVSX
ne
no87
not
option
0S_0s2
out sd
pop
popf
proto
push
pushf
.radi x
rdtsc
repe
repz
r ol
sal
sbyte
scasw
. seq
set be
set ge
set nae
set ne
setnle
setnz
set po
sgdt
shr
si ze
STBW
. stack
stdcal l
st osd
struct
t byte
this
tr5
uni on

The Watcom Assembler

.until usel6 use32 uses
vararg verr verw wai t
wat com.c wbi nvd .while wi dt h
wor d W st xadd xchg

. xcref x| at x|l atb .xlist
xor

2.3 Unsupported Directives

Other assemblers support directives that this assembler does not. The following isalist of
directives that are ignored by the Watcom Assembler (use of these directivesresultsin a

warning message).
. al pha .cref .1 fcond st
.listall distif .listmacro .l'istmacroall
. nocr ef .nol i st page .sall
. seq . sfcond subtitle subttl
.tfcond title . xcr ef Xl i st

Thefollowingisalist of directivesthat are flagged by the Watcom Assembler (use of these
directives results in an error message).

addr . break casenap catstr
.continue echo endnmacro . endw
.exit hi gh hi ghwor d i nvoke
| ow | ownor d I rof fset mask
opattr option popcont ext prot o
pur ge pushcont ext . radi x record
. repeat .startup this t ypedef
uni on .until .while wi dt h

2.4 Watcom Assembler Diagnostic Messages

1 Size doesn’t match with previous definition
2 Invalid instruction with current CPU setting
3 LOCK prefix isnot allowed on thisinstruction

4 REP prefix isnot allowed on thisinstruction

Watcom Assembler Diagnostic Messages 21

The Watcom Assembler

5 Invalid memory pointer

6 Cannot use 386 addressing mode with current CPU setting
7 Too many base registers

8 Invalid index register

9 Scale factor must be 1, 2, 4 or 8

10 invalid addressing mode with current CPU setting

11 ESP cannot be used asindex

12 Too many base/index registers

13 Memory offset cannot reference to more than one label
14 Offset must be relocatable

15 Memory offset expected

16 Invalid indirect memory operand

17 Cannot mix 16 and 32-bit registers

18 CPU type already set

19 Unknown directive

20 Expecting comma

21 Expecting number

22 Invalid label definition

23 Invalid use of SHORT, NEAR, FAR operator

24 No memory

25 Cannot use 386 segment register with current CPU setting

26 POP CSisnot allowed

22 Watcom Assembler Diagnostic Messages

The Watcom Assembler

27 Cannot use 386 register with current CPU setting
28 Only MOV can use special register

29 Cannot use TR3, TR4, TR5 in current CPU setting
30 Cannot use SHORT with CALL

31 Only SHORT displacement is allowed

32 Syntax error

33 Prefix must be followed by an instruction

34 No size given before’ PTR’ operator

35 Invalid IMUL format

36 Invalid SHLD/SHRD format

37 Too many commas

38 Syntax error: Unexpected colon

39 Operands must be the same size

40 Invalid instruction operands

41 mmediate constant too large

42 Can not use short or near modifierswith thisinstruction
43 Jump out of range

44 Displacement cannot be larger than 32k

45 I nitializer valuetoo large

46 Symbol already defined

47 Immediate data too large

48 lmmediate data out of range

Watcom Assembler Diagnostic Messages

23

The Watcom Assembler

49 Can not transfer control to stack symbol
50 Offset cannot be smaller than WORD size
51 Can not take offset of stack symbol
52 Can not take segment of stack symbol
53 Segment too large

54 Offset cannot be larger than 32k

55 Operand 2 too big

56 Operand 1 too small

57 Too many arithmetic operators

58 Too many open sguare brackets

59 Too many close square brackets

60 Too many open brackets

61 Too many close brackets

62 Invalid number digit

63 Assembler Codeistoo long

64 Brackets are not balanced

65 Operator is expected

66 Operand is expected

67 Too many tokensin aline

68 Bracket is expected

69 Illegal use of register

70 Illegal use of label

24 Watcom Assembler Diagnostic Messages

The Watcom Assembler

71 Invalid operand in addition

72 Invalid operand in subtraction

73 One operand must be constant

74 Constant operand is expected

75 A constant operand is expected in addition

76 A constant operand is expected in subtraction
77 A constant operand is expected in multiplication
78 A constant operand is expected in division

79 A constant operand is expected after a positive sign
80 A constant operand is expected after a negative sign
81 Label isnot defined

82 Morethan one override

83 Label is expected

84 Only segment or group label is allowed

85 Only register or label is expected in override

86 Unexpected end of file

87 Label istoo long

88 Thisfeature has not been implemented yet

89 Internal Error #1

90 Can not take offset of group

91 Can not take offset of segment

92 Invalid character found

Watcom Assembler Diagnostic Messages

25

The Watcom Assembler

93 Invalid operand size for instruction

94 Thisinstruction is not supported

95 size not specified -- BYTE PTR is assumed
96 size not specified -- WORD PTR is assumed
97 size not specified -- DWORD PTR is assumed
500 Segment parameter is defined already

501 Model parameter is defined already

502 Syntax error in segment definition

503 AT’ isnot supported in segment definition
504 Segment definition is changed

505 Lnameistoo long

506 Block nesting error

507 Ends a segment which is not opened

508 Segment option is undefined

509 Model option is undefined

510 No segment is currently opened

511 Lnameisused already

512 Segment is not defined

513 Publicis not defined

514 Colon is expected

515 A token is expected after colon

516 Invalid qualified type

26 Watcom Assembler Diagnostic Messages

The Watcom Assembler

517 Qualified type is expected

518 External definition different from previous one
519 Memory model is not found in .MODEL
520 Cannot open includefile

521 Nameis used already

522 Library nameis missing

523 Segment name ismissing

524 Group name is missing

525 Data emitted with no segment

526 Seglocation is expected

527 Invalid register

528 Cannot address with assumed register
529 Invalid start address

530 Label isalready defined

531 Token istoo long

532 Thelineistoo long after expansion
533 A label is expected after colon

534 Must be associated with code

535 Procedure must have a name

536 Procedureis alreadly defined

537 Language type must be specified

538 End of procedureisnot found

Watcom Assembler Diagnostic Messages 27

The Watcom Assembler

539 Local variable must immediately follow PROC or MACRO statement
540 Extra character found

541 Cannot nest procedures

542 No procedureis currently defined
543 Procedure name does not match

544 Vararg requires C calling convention
545 Model declared already

546 Model is not declared

547 Backquote expected

548 COMMENT delimiter expected

549 End directive required at end of file
550 Nesting level too deep

551 Symbol not defined

552 Insert Stupid warning #1 here

553 Insert Stupid warning #2 here

554 Spaces not allowed in command line options
555 Error:

556 Source File

557 No filename specified.

558 Out of Memory

559 Cannot Open File -

560 Cannot Close File -

28 Watcom Assembler Diagnostic Messages

The Watcom Assembler

561 Cannot Get Start of Source File -

562 Cannot Set to Start of Source File -

563 Command Line Contains More Than 1 File To Assemble
564 include path %s.

565 Unknown option %s. Use /? for list of options.

566 read more command line from %os.

567 Internal error in %s(%u)

568 OBJECT WRITE ERROR !'!

569 NO LOR PHARLAP !!

570 Parameter Required

571 Expecting closing square bracket

572 Expecting file name

573 Floating point instruction not allowed with /fpc

574 Too many errors

575 Build target not recognised

576 Public constants should be numeric O written

577 Expecting symbol

578 Do not mix simplified and full segment definitions

579 Parms passed in multiple registers must be accessed separately, use %s
580 Ten byte variables not supported in register calling convention
581 Parameter type not recognised

582 forced error:

Watcom Assembler Diagnostic Messages

29

The Watcom Assembler

583 forced error: Value not equal to O : %d

584 forced error: Value equal to 0: %d

585 forced error: symbol defined: %s

586 forced error: symbol not defined: %s

587 forced error: string blank : <%s>

588 forced error: string not blank : <%s>

589 forced error: strings not equal : <%s> : <%s>
590 forced error: strings equal : <%s> : <%s>
591 included by file %s(%od)

592 macro called from file %s(%d)

593 Symbol %s not defined

594 Extending jump

595 Ignoring inapplicable directive

596 Unknown symbol class’%s

597 Symbol classfor '%s' already established
598 number must be a power of 2

599 alignment request greater than segment alignment
600’ %s' is already defined

601 %u unclosed conditional directive(s) detected

30 Watcom Assembler Diagnostic Messages

Object File Utilities

Object File Utilities

32

3 The Watcom Library Manager

3.1 Introduction

The Watcom Library Manager can be used to create and update object library files. It takesas
input an object file or alibrary file and creates or updates alibrary file. For OS/2, Win16 and
Win32 applications, it can also create import libraries from Dynamic Link Libraries.
An object library is essentially a collection of object files. These object files generally contain
utility routines that can be used as input to the Watcom Linker to create an application. The
following are some of the advantages of using library files.
1. Only those modules that are referenced will be included in the executablefile. This
eliminates the need to know which object files should be included and which ones
should be left out when linking an application.

2. Librariesare agood way of organizing object files. When linking an application,
you need only list one library file instead of several object files.

The Watcom Library Manager currently runs under the following operating systems.
*DOS
» 0S/2
« QONX

* Windows

3.2 The Watcom Library Manager Command Line

The following describes the Watcom Library Manager command line.

The Watcom Library Manager Command Line 33

Object File Utilities

WLIB [options_1] lib_file[options_2] [emd_list]

The square brackets "[]" denote items which are optional.

lib_file isthefile specification for the library file to be processed. If nofile extensionis
specified, afile extension of "lib" is assumed.

options 1 isalist of valid options. Options may be specified in any order. If you are using
aDOS, 0S/2 or Windows-hosted version of the Watcom Library Manager,
options are preceded by a"/" or "—" character. If you are using a QNX-hosted
version of the Watcom Library Manager, options are preceded by a"—"
character.

options 2 isalist of valid options. These options are only permitted if you are running a
DOS, OS2 or Windows-hosted version of the Watcom Library Manager and
must be preceded by a"/" character. The"—" character cannot be used as an
option delimiter for options following the library file name since it will be
interpreted as a del ete command.

cmd_list isalist of commands to the Watcom Library Manager specifying what
operations are to be performed. Each command in cmd_list is separated by a
space.

Thefollowing is asummary of valid options. Items enclosed in square brackets "[]" are
optional. Items separated by an or-bar "|" and enclosed in parentheses ()" indicate that one of
the items must be specified. Items enclosed in angle brackets "<>" are to be replaced with a
user-supplied name or value (the "<>" are not included in what you specify).

? display the usage message
b suppress creation of backup file
c perform case sensitive comparison
d=<output_directory>
directory in which extracted object modules will be placed
fa output AR format library
fm output MLIB format library
fo output OMF format library
h display the usage message
ia generate AXP import records
ii generate X86 import records
ip generate PPC import records

34 The Watcom Library Manager Command Line

The Watcom Library Manager

ie generate ELF import records

ic generate COFF import records

io generate OMF import records

i(rjn)(njo) importsfor the resident/non-resident names table are to be imported by
name/ordinal .

[[=<list_file>]
create alisting file

m display C++ mangled names

n always create anew library

o=<output_file>
set output file name for library
p=<record_size>
set library page size (supported for "OMF" library format only)

q suppress identification banner

S strip line number records from object files (supported for "OMF" library format
only)

t remove path information from module name specified in THEADR records
(supported for "OMF" library format only)

Y% do not suppress identification banner

X extract al object modules from library

The following sections describe the operations that can be performed on alibrary file. Note
that before making a change to alibrary file, the Watcom Library Manager makes a backup
copy of the original library file unless the "0" option is used to specify an output library file
whose name is different than the original library file, or the "b" option is used to suppress the
creation of the backup file. The backup copy has the same file name as the origina library
file but has afile extension of "bak". Hence, lib_file should not have afile extension of
"bak".

3.3 Adding Modules to a Library File

An object file can be added to alibrary file by specifying a+obj_file command where
obj_fileisthefile specification for an object file. If you are using aDOS, OS/2 or
Windows-hosted version of the Watcom Library Manager, afile extension of "obj" is assumed
if noneis specified. If you are using a QNX-hosted version of the Watcom Library Manager,
afile extension of "0" isassumed if noneis specified. If thelibrary file does not exist, a
warning message will be issued and the library file will be created.

Adding Modules to a Library File 35

Object File Utilities

Example:
wWib nmylib +nyobj

In the above example, the abject file "myobj" is added to the library file "mylib.lib".

When amodule is added to alibrary, the Watcom Library Manager will issue awarning if a
symbol redefinition occurs. Thiswill occur if asymbol in the module being added is already
defined in another module that already existsin the library file. Note that the module will be
added to the library in any case.

It is also possible to combine two library filestogether. The following example adds all
modulesin the library "newlib.lib" to the library "mylib.lib".

Example:
Wib nmylib +newib.lib

Note that you must specify the "lib" file extension. Otherwise, the Watcom Library Manager
will assume you are adding an object file.

3.4 Deleting Modules from a Library File

A module can be deleted from alibrary file by specifying a-mod_name command where
mod_name isthe file name of the object file when it was added to the library with the
directory and file extension removed.

Example:
wWib nylib -nyobj

In the above example, the Watcom Library Manager is instructed to delete the module
"myobj" from the library file "mylib.lib".

It isalso possible to specify alibrary file instead of a module name.

Example:
wWib nmylib -oldlib.lib

In the above example, all modulesin the library file "oldlib.lib" are removed from the library

file"mylib.lib". Note that you must specify the "lib" file extension. Otherwise, the Watcom
Library Manager will assume you are removing an object module.

36 Deleting Modules from a Library File

The Watcom Library Manager

3.5 Replacing Modules in a Library File

A module can be replaced by specifying a-+mod_name or +-mod_name command. The
module mod_name is deleted from the library. The object file "mod_name" is then added to
thelibrary.

Example:
wib nmylib -+nmyobj

In the above example, the module "myobj" is replaced by the object file "myaobj".
It isalso possible to merge two library files.

Example:
Wib nylib -+updlib.lib

In the above example, all modulesin the library file "updlib.lib" replace the corresponding
modulesin the library file "mylib.lib". Any modulein the library "updlib.lib" not in library
"mylib.lib" is added to the library "mylib.lib". Note that you must specify the "lib" file
extension. Otherwise, the Watcom Library Manager will assume you are replacing an object
module.

3.6 Extracting a Module from a Library File

A module can be extracted from alibrary file by specifying a*mod_name command for a
DOS, OS2 or Windows-hosted version of the Watcom Library Manager or a:mod_name
command for a QNX-hosted version of the Watcom Library Manager. The module
mod_nameis not deleted but is copied to adisk file. If mod_nameis preceded by a path
specification, the output file will be placed in the directory identified by the path specification.
If mod_name isfollowed by afile extension, the output file will contain the specified file

extension.
Example:
wWib nylib *myobj DOS, Os/2 or W ndows- host ed
or
wib nylib :nyobj Q\X- host ed

In the above example, the module "myobj" is copied to adisk file. Thedisk filewill be an
object file with file name "myobj". If you are running aDOS, OS2 or Windows-hosted
version of the Watcom Library Manager, afile extension of "obj" will be used. If you are
running a QN X-hosted version of the Watcom Library Manager, afile extension of "o" will be
used.

Extracting a Module from a Library File 37

Object File Utilities

Example:
wWib nylib *myobj. out DOS, Os/2 or W ndows- hosted
or
wWib nylib :myobj. out Q\X- host ed

In the above example, the module "myobj" will be extracted from the library file "mylib.lib"
and placed in the file "myobj.out"

Y ou can extract a module from afile and have that module deleted from the library file by
specifying a*-mod_name command for a DOS, OS/2 or Windows-hosted version of the
Watcom Library Manager or a:-mod_name command for a QNX-hosted version of the
Watcom Library Manager. The following example performs the same operations asin the
previous example but, in addition, the module is deleted from the library file.

Example:
Wib nylib *-nyobj. out DOS, Os/2 or W ndows- host ed
or
wib nylib :-nyobj. out Q\X- host ed

Note that the same result is achieved if the del ete operator precedes the extract operator.

3.7 Creating Import Libraries

The Watcom Library Manager can also be used to create import libraries from Dynamic Link
Libraries. Import libraries are used when linking OS/2, Win16 or Win32 applications.

Example:
Wib inplib +dynamic.dll

In the above example, the following actions are performed. For each external symbol in the
specified Dynamic Link Library, a special object moduleis created that identifies the external
symbol and the actual name of the Dynamic Link Library it is defined in. This object module
is then added to the specified library. Theresulting library is called an import library.

Note that you must specify the "dll" file extension. Otherwise, the Watcom Library Manager
will assume you are adding an object file.

38 Creating Import Libraries

The Watcom Library Manager

3.8 Creating Import Library Entries

Animport library entry can be created and added to alibrary by specifying a command of the
following form.

++symdl | _nane[.[al tsym . export _nane][.ordi nal]
where description:
sym is the name of a symbol in aDynamic Link Library.
dil_name isthe name of the Dynamic Link Library that defines sym

altsym isthe name of a symbol in a Dynamic Link Library. When omitted, the default
symbol nameissym

export_name isthe name that an application that is linking to the Dynamic Link Library uses
to reference sym When omitted, the default export nameis sym

ordinal isthe ordinal value that can be used to identify syminstead of using the name
export _nane.

Example:
Wib mth ++ sin.trig.sin.1

In the above example, an import library entry will be created for symbol si n and added to the
library "math.lib*. The symbol si n isdefined in the Dynamic Link Library called "trig.dll"
as__sin. Whenan application is linked with the library "math.lib", the resulting
executable file will contain an import by ordinal value 1. If the ordinal value was omitted, the
resulting executabl e file would contain an import by name si n.

3.9 Commands from a File or Environment Variable

The Watcom Library Manager can be instructed to process all commandsin adisk file or
environment variable by specifying the @name command where nameis afile specification
for the command file or the name of an environment variable. A file extension of "Ibc" is
assumed for filesif noneis specified. The commands must be one of those previously
described.

Commands from a File or Environment Variable 39

Object File Utilities

Example:
Wib nylib @vycnd

In the above example, all commands in the environment variable "mycmd” or file
"mycmd.Ibc" are processed by the Watcom Library Manager.

3.10 Watcom Library Manager Options

The following sections describe the list of options allowed when invoking the Watcom
Library Manager.

3.10.1 Suppress Creation of Backup File - "b" Option
The "b" option tells the Watcom Library Manager to not create a backup library file. Inthe
following example, the object file identified by "new" will be added to the library file
"mylib.lib".

Example:
Wib -b nylib +new

If thelibrary file "mylib.lib" already exits, no backup library file ("mylib.bak") will be
created.

3.10.2 Case Sensitive Symbol Names - "c" Option
The"c" option tellsthe Watcom Library Manager to use a case sensitive compare when
comparing a symbol to be added to the library to a symbol already in thelibrary file. This
will cause the names "myrtn" and "MYRTN" to be treated as different symbols. By defaullt,

comparisons are case insensitive. That isthe symbol "myrtn” is the same as the symbol
"MYRTN".

3.10.3 Specify Output Directory - "d" Option

The"d" option tells the Watcom Library Manager the directory in which all extracted modules
areto be placed. The default isto place al extracted modules in the current directory.

In the following example, the module "mymod"” is extracted from the library "mylib.lib". 1f
you are running a DOS, OS/2 or Windows-hosted version of the Watcom Library Manager,

40 Watcom Library Manager Options

The Watcom Library Manager

the module will be placed in the file "\obj\mymod.obj". If you are running a QNX-hosted
version of the Watcom Library Manager, the module will be placed in the file "/o/mymod.o"”.

Example:
wWib -d=\obj nynod DOS, OS/ 2 or W ndows- host ed
or
wib -d=/o nynod QNX- host ed

3.10.4 Specify Output Format - "f* Option

The"f" option tells the Watcom Library Manager the format of the output library. The default
output format is determined by the type of object files that are added to the library when it is
created. The possible output format options are;

fa output AR format library
fm output MLIB format library
fo output OMF format library

3.10.5 Generating Imports - "i" Option
The"i" option can be used to describe type of import library to create.
ia generate AXP import records

i generate X86 import records

ip generate PPC import records
ie generate ELF import records
ic generate COFF import records
io generate OMF import records

When creating import libraries from Dynamic Link Libraries, import entries for the namesin
the resident and non-resident names tables are created. The"i" option can be used to describe
the method used to import these names.

Watcom Library Manager Options 41

Object File Utilities

iro Specifying "iro" causes imports for names in the resident names table to be
imported by ordinal.

irn Specifying "irn" causes imports for namesin the resident names table to be
imported by name. Thisis the defaullt.

ino Specifying "ino" causes imports for names in the non-resident names table to be
imported by ordinal. Thisisthe default.

inn Specifying "inn" causes imports for names in the non-resident names table to be
imported by name.

Example:
Wib -iro -inn inplib +dynanic.dll

Note that you must specify the "dIl" file extension for the Dynamic Link Library. Otherwise
an object file will be assumed.

3.10.6 Creating a Listing File - "I" Option

The"I" (lower case "L") option instructs the Watcom Library Manager to produce alist of the
names of all symbolsthat can be found inthelibrary fileto alisting file. The file name of the
listing file is the same as the file name of the library file. Thefile extension of the listing file
is"lst".

Example:
wWwib -1 nylib

In the above example, the Watcom Library Manager isinstructed to list the contents of the
library file "mylib.lib" and produce the output to alisting file called "mylib.Ist".

An dternate form of thisoptionis -1 =I'i st _fil e. Withthisform, you can specify the

name of thelisting file. When specifying alisting file name, afile extension of "Ist" is
assumed if noneis specified.

42 Watcom Library Manager Options

The Watcom Library Manager

Example:
Wib -l=nylib.out nylib

In the above example, the Watcom Library Manager is instructed to list the contents of the
library file "mylib.lib" and produce the output to alisting file called "mylib.out".

Y ou can get alisting of the contents of alibrary file to the terminal by specifying only the
library name on the command line as demonstrated by the following example.

Example:
wib nmylib

3.10.7 Display C++ Mangled Names - "m" Option
The"m" option instructs the Watcom Library Manager to display C++ mangled names rather
than displaying their demangled form. The default isto interpret mangled C++ names and
display them in a somewhat more intelligible form.

3.10.8 Always Create a New Library - "n" Option
The"n" option tells the Watcom Library Manager to always create anew library file. If the
library file aready exists, a backup copy is made (unless the "b" option was specified). The
original contents of the library are discarded and anew library is created. If the"n" option

was not specified, the existing library would be updated.

Example:
Wib -n nylib +myobj

In the above example, alibrary file called "mylib.lib" is created. It will contain a single object

module, namely "myobj", regardless of the contents of "mylib.lib" prior to issuing the above
command. If "mylib.lib" aready exists, it will be renamed to "mylib.bak".

3.10.9 Specifying an Output File Name - "0" Option

The"o" option can be used to specify the output library file name if you want the original
library to remain unchanged and a new library created.

Watcom Library Manager Options 43

Object File Utilities

Example:
Wib -o=newlib libl +lib2.1ib

In the above example, the modules from "lib1.lib" and "lib2.l1ib" are added to the library
"newlib.lib". Note that since the original library remains unchanged, no backup copy is
created. Also, if the"|" option isused to specify alisting file, the listing file will assume the
file name of the output library.

3.10.10 Specifying a Library Record Size - "p" Option

The "p" option specifies the record size in bytes for each record in the library file. The record
size must be apower of 2 and in the range 16 to 32768. If therecord sizeislessthan 16, it
will berounded up to 16. If therecord sizeis greater than 16 and not a power of 2, it will be
rounded up to the nearest power of 2. The default record sizeis 256 bytes.

Each entry in the dictionary of alibrary file contains an offset from the start of the file which
pointsto amodule. The offset is 16 bits and isamultiple of the record size. Since the default
record size is 256, the maximum size of alibrary file for arecord size of 256 is 256*64K. If
the size of the library file increases beyond this size, you must increase the record size.

Example:
Wib -p=512 libl +lib2.1ib

In the above example, the Watcom Library Manager isinstructed to create/update the library

file"libl.lib" by adding the modules from the library file "lib2.lib". The record size of the
resulting library fileis 512 bytes.

3.10.11 Operate Quietly - "g" Option

The"q" option suppressing the banner and copyright notice that is normally displayed when
the Watcom Library Manager isinvoked.

Example:
Wwib -q -I nylib

3.10.12 Strip Line Number Records - "'s" Option

The"s" option tells the Watcom Library Manager to remove line number records from object
filesthat are being added to alibrary. Line number records are generated in the object file if
the "d1" option is specified when compiling the source code.

44 Watcom Library Manager Options

The Watcom Library Manager

Example:
Wib -s nylib +nmyobj

3.10.13 Trim Module Name - "t" Option

The"t" option tells the Watcom Library Manager to remove path information from the
module name specified in THEADR records in object files that are being added to alibrary.
The module name is created from the file name by the compiler and placed in the THEADR
record of the object file. The module name will contain path information if the file name
given to the compiler contains path information.

Example:
wib -t nylib +nyobj
3.10.14 Operate Verbosely - "v*' Option

The"v" option enables the display of the banner and copyright notice when the Watcom
Library Manager isinvoked.

Example:
Wib -v -1 nylib

3.10.15 Explode Library File - "x" Option

The"x" option tells the Watcom Library Manager to extract all modules from the library.
Note that the modules are not deleted from the library. Object modules will be placed in the
current directory unlessthe "d" option is used to specify an alternate directory.

In the following example all modules will be extracted from the library "mylib.lib" and placed
in the current directory.

Example:
Wib -x mylib

In the following example, all modules will be extracted from the library "mylib.lib". 1f you
are running a DOS, OS/2 or Windows-hosted version of the Watcom Library Manager, the
module will be placed in the "\obj" directory. If you are running a QNX-hosted version of the
Watcom Library Manager, the module will be placed in the file "/0" directory.

Watcom Library Manager Options 45

Object File Utilities

Example:
Wib -x -d=\obj nylib DOS, Os/2 or W ndows- hosted
or
Wib -x -d=/o nylib Q\X- host ed

3.11 Librarian Error Messages

The following messages may be issued by the Watcom Library Manager.

Error! Could not open object file'%s'.
Object file’%s' could not be found. This message isusually issued when an
attempt is made to add a non-existent object file to the library.

Error! Could not open library file’%s'.
The specified library file could not be found. Thisisusually issued for input
library files. For example, if you are combining two library files, the library file
you are adding is an input library file and the library file you are adding to or
creating is an output library file.

Error! Invalid object modulein file’%s' not added.
The specified file contains an invalid object module.

Error! Dictionary too large. Recommend split library into two libraries.
The size of the dictionary in alibrary file cannot exceed 64K. Y ou must split
the library file into two separate library files.

Error! Redefinition of module’%s' in file’%s .
This message is usually issued when an attempt is made to add amoduleto a
library that already contains a module by that name.

Warning! Redefinition of symbol "%s' in file’%s' ignored.
Thismessage isissued if asymbol defined by a module already in the library is
a so defined by a module being added to the library.

Error! Library too large. Recommend split library into two libraries or try a larger
page bound than %xH.
The record size of the library file does not allow the library file to increase
beyond its current size. The record size of the library file must be increased
using the "p" option.

Error! Expected '%s' in'%s but found'%s'.
An error occurred while scanning command input.

46 Librarian Error Messages

The Watcom Library Manager

Warning! Could not find module’%s' for deletion.
Thismessageisissued if an attempt is made to delete a module that does not
existinthelibrary.

Error! Could not find module’%s' for extraction.
This message isissued if an attempt is made to extract a module that does not
exist in thelibrary.

Error! Could not rename old library for backup.
The Watcom Library Manager creates a backup copy before making any
changes (unlessthe "b" option is specified). This messageisissued if an error
occurred while trying to rename the original library file to the backup file name.

Warning! Could not open library '%s’ : will be created.
The specified library does not exist. 1t isusually issued when you are adding to
anon-existent library. The Watcom Library Manager will create the library.

Warning! Output library name specification ignored.
Thismessageisissued if the library file specified by the "0" option could not be
opened.

Warning! Could not open library '%s and no operations specified: will not be created.
Thismessage isissued if the library file specified on the command line does not
exist and no operations were specified. For example, asking for alisting file of a
non-existent library will cause this message to be issued.

Warning! Could not open listing file’%s'.
Thelisting file could not be opened. For example, this message will be issued
when a"disk full" condition is present.

Error! Could not open output library.
The output library could not be opened.

Error! Unable to write to output library.
An error occurred while writing to the output library.

Error! Unable to write to extraction file ' %s'.
This message isissued when extracting an object module from alibrary file and
an error occurs while writing to the output file.

Error! Out of Memory.
There was not enough memory to processthe library file.

Librarian Error Messages 47

Object File Utilities

Error! Could not open file’%s'.
This messageisissued if the output file for amodule that is being extracted from
alibrary could not be opened.

Error! Library'%s isinvalid. Contentsignored.
Thelibrary file does not contain the correct header information.

Error! Library’'%s hasan invalid page size. Contentsignored.
Thelibrary file has an invalid record size. Therecord sizeis contained in the
library header and must be a power of 2.

Error! Invalid object record found in file ' %s'.
The specified file contains an invalid object record.

Error! No library specified on command line.
This messageisissued if alibrary file nameis not specified on the command
line.

Error! Expecting library name.
This message isissued if the location of the library file name on the command
lineisincorrect.

Warning! Invalid file name’ %s'.
Thismessageisissued if aninvalid file name is specified. For example, afile
name longer that 127 charactersis not alowed.

Error! Could not open command file’%s'.
The specified command file could not be opened.

Error! Could not read from file’%s . Contentsignored as command input.
An error occurred while reading a command file.

48 Librarian Error Messages

4 The Object File Disassembler

4.1 Introduction

This chapter describes the Watcom Disassembler. It takes asinput an object file (afile with
extension ".obj") and produces, as output, the Intel assembly language equivalent. The
Watcom compilers do not produce an assembly language listing directly from a source
program. Instead, the Watcom Disassembler can be used to generate an assembly language
listing from the object file generated by the compiler.

The Watcom Disassembler command line syntax is the following.

WDI S [optiong] [d:][path]filename].ext] [options]

The square brackets [] denote items which are optional.
WDIS is the name of the Watcom Disassembler.

d: isan optional drive specification such as"A:", "B:", etc. If not specified, the
default drive is assumed.

path isan optional path specification such as "\PROGRAMS\OBJ\". If not specified,
the current directory is assumed.

filename isthefile name of the object file to disassemble.
ext isthe file extension of the object file to disassemble. If omitted, afile extension
of ".obj" isassumed. If the period"." is specified but not the extension, thefile

is assumed to have no file extension.

options isalist of valid options, each preceded by adlash (/") or adash ("-"). Options
may be specified in any order.

The options supported by the Watcom Disassembler are:

Introduction 49

Object File Utilities

a write assembly instructions only to the listing file
e include list of external names
fp do not use instruction name pseudonyms
fr do not use register name pseudonyms [Alpha only]
fi use aternate indexing format [80(x)86 only]
fu instructions/registers in upper case
i=<char> redefinetheinitia character of internal labels (default: L)
[[=<list_file>]
create alisting file
m leave C++ names mangled
o] print list of operands beside instructions
p include list of public names
g=<source file>]

using object file source line information, imbed original source linesinto the
output file

The following sections describe the list of options.

4.2 Changing the Internal Label Character - "i=<char>"

The"i" option permits you to specify the first character to be used for internal labels. Internal
labels take the form "Ln" where "n" is one or more digits. The default character "L" can be
changed using the "i" option. The replacement character must be aletter (a-z, A-Z). A
lowercase |etter is converted to uppercase.

Example:
Cwdi s cal endar /i =x

4.3 The Assembly Format Option - "a"

The"a" option controls the format of the output produced to the listing file. When specified,
the Watcom Disassembler will produce alisting file that can be used as input to an assembler.

50 The Assembly Format Option - "a"

The Object File Disassembler

Example:
Cwdi s calendar /a /| =cal endar. asm

In the above example, the Watcom Disassembler is instructed to disassembl e the contents of
the file CALENDAR. OBJ and produce the output to the file CALENDAR. ASMso that it can be
assembled by an assembler.

4.4 The External Symbols Option - "e"

The"€" option controls the amount of information produced in the listing file. When
specified, alist of al externally defined symbolsis produced in the listing file.

Example:
Cwdi s calendar /e

In the above example, the Watcom Disassembler isinstructed to disassemble the contents of
the file CALENDAR. OBJ and produce the output, with alist of all external symbols, on the
screen. A samplelist of external symbolsis shown below.

Li st of external synbols

Synbol

CALENDAR 000000cf 0000008b 00000047
CLEARSCREEN 0000000a

GETDAT 00000018

POSCURSOR 000000e8

Each externally defined symbol is followed by alist of location counter values indicating
where the symboal is referenced.

The"€" option isignored when the "a" option is specified.

4.5 The No Instruction Name Pseudonyms Option -
Ilfpll

By default, AXP instruction name pseudonyms are emitted in place of actual instruction

names. The Watcom AXP Assembler accepts instruction name pseudonyms. The "fp" option
instructs the Watcom Disassembler to emit the actual instruction names instead.

The No Instruction Name Pseudonyms Option - "fp" 51

Object File Utilities

4.6 The No Register Name Pseudonyms Option - "fr"

By default, AXP register names are emitted in pseudonym form. The Watcom AXP
Assembler accepts register pseudonyms. The "fr" option instructs the Watcom Disassembler
to display register names in their non-pseudonym form.

4.7 The Alternate Addressing Form Option - "fi"

The"fi" option causes an alternate syntactical form of the based or indexed addressing mode
of the 80x86 to be used in an instruction. For example, the following form is used by default
for Intel instructions.

nov ax, - 2[bp]
If the "fi" option is specified, the following form is used.

nov ax, [bp- 2]

4.8 The Uppercase Instructions/Registers Option - "fu

The"fu" option instructs the Watcom Disassembler to display instruction and register names
in uppercase characters. The default isto display them in lowercase characters.

4.9 The Listing Option - "l[=<list_file>]"

By default, the Watcom Disassembler produces its output to the terminal. The"l" (lowercase
L) option instructs the Watcom Disassembler to produce the output to alisting file. The
default file name of the listing file is the same as the file name of the object file. The default
file extension of thelisting fileis . LST.

52 The Listing Option - "l[=<list_file>]"

The Object File Disassembler

Example:
Cwdi s cal endar /1

In the above example, the Watcom Disassembler is instructed to disassembl e the contents of
the file CALENDAR. OBJ and produce the output to a listing file called CALENDAR. LST.

An aternate form of thisoption is"I=<list_file>". With thisform, you can specify the name
of thelisting file. When specifying alisting file, afile extension of . LST isassumed if none
is specified.

Example:
Cwdi s calendar /l=calendar.lis

In the above example, the Watcom Disassembler is instructed to disassembl e the contents of
the file CALENDAR. OBJ and produce the output to alisting file called CALENDAR. LI S.

4.10 The Public Symbols Option - "p"

The"p" option controls the amount of information produced in the listing file. When
specified, alist of al public symbolsis produced in thelisting file.

Example:
Cwdi s cal endar /p

In the above example, the Watcom Disassembler is instructed to disassembl e the contents of
the file CALENDAR. OBJ and produce the output, with alist of al exported symbols, to the
screen. A samplelist of public symbolsis shown below.

Li st of public synbols

SYMBOL GROUP SEGVENT ADDRESS
BOX BOX_TEXT 00000000
CALENDAR CALENDAR_TEXT 00000000
CLEARSCREEN CLEARSCREEN_TEXT 00000000
FMAI N FMAI N_TEXT 00000000
LI NE LI NE_TEXT 00000000
POSCURSCR POSCURSOR_TEXT 00000000

The"p" option isignored when the "a" option is specified.

The Public Symbols Option - "p" 53

Object File Utilities

4.11 Retain C++ Mangled Names - "m"

The"m" option instructs the Watcom Disassembler to retain C++ mangled names rather than
displaying their demangled form. The default is to interpret mangled C++ names and display
them in a somewhat more intelligible form.

4.12 The Source Option - "s[=<source_file>]"

The"s" option causes the source lines corresponding to the assembly language instructions to
be produced in the listing file. The object file must contain line numbering information. That
is, the"d1" or "d2" option must have been specified when the source file was compiled. If no
line numbering information is present in the object file, the "s" option isignored.

The following defines the order in which the source file name is determined when the "s’
option is specified.

1. If present, the source file name specified on the command line.
2. The name from the modul e header record.
3. Theobject file name.

In the following example, we have compiled the source file MYSRC. FOR with "d1"
debugging information. We then disassemble it as follows:

Example:
Cwdis nysrc /s /1

In the above example, the Watcom Disassembler isinstructed to disassemble the contents of
the file MYSRC. OBJ and produce the output to the listing file MYSRC. LST. The source
lines are extracted from the file MYSRC. FOR.

An aternate form of this option is"s=<source file>". With thisform, you can specify the
name of the sourcefile.

54 The Source Option - "s[=<source_file>]"

The Object File Disassembler

Example:
Cwdi s nysrc /s=nyprog.for /I

The above example produces the same result as in the previous example except the source
lines are extracted from the file MYPROG. FOR.

4.13 An Example

Consider the following program contained in the file HELLO. FOR.

pr ogram mai n
print *, "Hello world’
end

Compileit with the "d1" option. An object file called HELLO. OBJ will be produced. The
"d1" option causes line numbering information to be generated in the object file. We can use
the Watcom Disassembler to disassemble the contents of the object file by issuing the
following command.

Cwdis hello /I /e /p /s /fu

The output will be written to alisting file called HELLO. LST (the"I" option was specified").
It will contain alist of external symbols (the "€" option was specified), alist of public symbols
(the "p" option was specified) and the source lines corresponding to the assembly language
instructions (the "s" option was specified). The sourceinput fileiscalled HELLO. FOR. The
register names will be displayed in upper case (the "fu" option was specified). The output,
shown below, isthe result of using the Watcom F77 compiler.

Modul e: hel | o. for

Group: ' DGROUP' CONST, _DATA, _BSS

G oup: ' FLAT

Segnent: ' FMAI N_TEXT" BYTE USE32 00000014 bytes

program mai n
print *, "Hello world

0000 e8 00 00 00 0O FMAI N cal | RT@OWite
0005 b8 00 00 00 00 nov EAX, of fset L2
000a e8 00 00 00 0O cal | RT@ut CHAR
000f e9 00 00 00 0O jnmp RT@ndl O

An Example 55

Object File Utilities

No di sassenbly errors

Li st of external synbols

Synbol

RT@ndl O 00000010
RT@OWite 00000001
RT@ut CHAR 0000000b

Segnent: ' CONST' WORD USE32 0000000b bytes

0000 48 65 6¢c 6¢c 6f 20 77 6f L1 - Hello wo
0008 72 6¢c 64 - rld

No di sassenbly errors

Segnent: ' _DATA" WORD USE32 00000008 bytes

0000 00 00 00 00 L2 DD DGROUP: L1
0004 Ob 00 00 00 -

No di sassenbly errors

Let us create aform of the listing file that can be used as input to an assembler.

Cwdis hello /l=hello.asm/r /a

The output will be produced in the file HELLO. ASM The output, shown below, isthe result
of using the Watcom F77 compiler.

56 AnExample

The Object File Disassembler

. 387
. 386p

DGROUP
CONST
L$1:

CONST
_DATA
L$2:

_DATA
_BSS
_BSS
_TEXT

FMAI N
CALL

CALL

TEXT

PUBLI C

ENDS
SEGVENT
ENDS

SEGVENT

FMAI N

‘RT@OWite':BYTE

‘ RT@ut CHAR : BYTE

‘ RT@ndl O : BYTE
__init_error:BYTE
__init_english: BYTE
__init_387_enul ator: BYTE
_cstart _: BYTE

CONST, _DATA, _BSS

PARA PUBLI C USE32 ' DATA

0x48, 0x65, 0x6c, 0x6c, 0x6f, 0x20, 0x77, Ox6f
0x72, 0x6c, 0x64

PARA PUBLI C USE32 ' DATA

L$1

0x0b, 0x00, 0x00, 0x00

PARA PUBLI C USE32 ' BSS

BYTE PUBLI C USE32 ' CODE

ASSUME CS: _TEXT, DS: DGROUP, SS: DGROUP

near ptr
EAX, of f set
near ptr
near ptr

ENDS
END

‘

‘

.

RT@OWite'
L$2

RT@Dut CHAR
RT@Endl O

An Example 57

Object File Utilities

58 AnExample

5 Optimization of Far Calls

Optimization of far calls can result in smaller executable files and improved performance. It
is most useful when the automatic grouping of logical segments into physical segments takes
place. Note that, by default, automatic grouping is performed by the Watcom Linker.

The Watcom C, C++ and FORTRAN 77 compilers automatically enable the far call
optimization. The Watcom Linker will optimize far calls to procedures that reside in the same
physical segment asthe caller. For example, alarge code model program will probably
contain many far calls to procedures in the same physical segment. Since the segment address
of the caller is the same as the segment address of the called procedure, only anear call is
necessary. A near call does not require a relocation entry in the relocation table of the
executable file whereas afar call does. Thus, the far call optimization will result in smaller
executable files that will load faster. Furthermore, a near call will generally execute faster
than afar call, particularly on 286 and 386-based machines where, for applications running in
protected mode, segment switching isfairly expensive.

The following describes the far call optimization. The call far label instruction is converted
to one of the following sequences of code.

push cS seg Ss

cal | near | abel push cs

nop cal | near | abel
Notes:

1. Thenop or seg ssinstruction is present since a call far label instruction isfive
bytes. The push csinstruction is one byte and the call near label instruction is
three bytes. The seg ssinstruction is used because it is faster than the nop
instruction.

2. Thecalled procedure will still use aretf instruction but since the code segment and
the near address are pushed on the stack, the far return will execute correctly.

3. Theposition of the padding instruction is chosen so that the return addressis word
aligned. A word aligned return address improves performance.

Optimization of Far Calls 59

Object File Utilities

4. When two consecutive call far label instructions are optimized and the first call
far label instruction is word aligned, the following sequence replaces both call far
label instructions.

push CSs
cal | near | abel 1
seg SS
push cs
seg cs
cal | near | abel 2

5. If your program contains only near calls, this optimization will have no effect.

A far jJump optimization is also performed by the Watcom Linker. This has the same benefits
asthefar call optimization. A jmp far label instruction to alocation in the same segment will
be replaced by the following sequence of code.

jmp near | abel
nov ax, ax

Note that for 32-bit segments, this instruction becomes nov eax, eax.

5.1 Far Call Optimizations for Non-Watcom Object
Modules

Thefar call optimization is automatically enabled when object modules created by the
Watcom C, C++, or FORTRAN 77 compilers are linked. These compilers mark those
segments in which this optimization can be performed. The following utility can be used to
enable this optimization for object modules that have been created by other compilers or
assemblers.

5.1.1 The Watcom Far Call Optimization Enabling Utility

Only DOS, 0S/2 and Windows-hosted versions of the Watcom Far Call Optimization
Enabling Utility are available. A QNX-hosted version is not necessary since QNX-hosted
development tools that generate object files, generate the necessary information that enables
the far call optimization.

The format of the Watcom Far Call Optimization Enabling Utility isasfollows. Items

enclosed in square brackets are optional; items enclosed in braces may be repeated zero or
more times.

60 Far Call Optimizations for Non-Watcom Object Modules

Optimization of Far Calls

FCENABLE { [option] [file] }

where
option

file

description:
isan option and must be preceded by adash ('-') or slash ('/").
isafile specification for an object file or library file. If no file extensionis

specified, afile extension of "obj" is assumed. Wild card specifiers may be
used.

The following describes the command line options.

b

Notes:

1.

Do not create abackup file. By default, abackup file will be created. The
backup file name will have the same file name as the input file and afile
extension of "bob" for object files and "bak" for library files.

Specify alist of class names, each separated by acomma. This enables the far
call optimization for all segments belonging to the specified classes.

Specify alist of segment names, each separated by acomma. This enablesthe
far call optimization for all specified segments.

Specify alist of ranges, each separated by a comma, for which no far call
optimizations are to be made. A range has the following format.

seg_nane start-end
or
seg_nane start:length

seg_nameisthe name of asegment. start isan offset into the specified segment
defining the start of the range. end is an offset into the specified segment
defining the end of the range. length is the number of bytes from start to be
included in therange. All values are assumed to be hexadecimal.

If more than one class list or segment list is specified, only the last oneisused. A
class or segment list appliesto all object and library files regardless of their
position relative to the class or segment list.

Far Call Optimizations for Non-Watcom Object Modules 61

Object File Utilities

2. Arangelist applies only to thefirst object file following the range specification. 1f
the object file contains more than one module, the range list will only apply to the
first module in the object file.

The following examples illustrate the use of the Watcom Far Call Optimization Enabling
Utility.

Example:
fcenable /c code *. obj

In the above example, the far call optimization will be enabled for all segments belonging to
the "code" class.

Example:
fcenable /s _text *.obj

In the above example, the far call optimization will be enabled for all segments with name
Il_textll i

Example:
fcenable /x special 0:400 asnfile.obj

In the above example, the far call optimization will be disabled for the first 1k bytes of the
segment named "specia” in the object file "asmfile".

Example:
fcenable /x special O-ffffffff asnfile. obj

In the above example, the far call optimization will be disabled for the entire segment named
"specia" in the object file "asmfile".

62 Far Call Optimizations for Non-Watcom Object Modules

Executable Image Utilities

Executable Image Utilities

64

6 The Watcom Patch Utility

6.1 Introduction

The Watcom Patch Utility isa utility program which may be used to apply patches or bug
fixesto Watcom’s compilers and its associated tools. As problems are reported and fixed,
patches are created and made available on Watcom’s BBS, Watcom’s FTP site, or
CompuServe for users to download and apply to their copy of the tools.

6.2 Applying a Patch

The format of the BPATCH command lineis:

BPATCH [options] patch_file

The square brackets [] denote items which are optional.
where description:

options isalist of valid Watcom Patch Utility options, each preceded by adash ("-").
Options may be specified in any order. The possible options are:

-p Do not prompt for confirmation
-b Do not create a .BAK file
-q Print current patch level of file

patch_file isthefile specification for a patch file provided by Watcom.

Suppose a patch file called "wlink.a" is supplied by Watcom to fix abug in the file
"WLINK.EXE". The patch may be applied by typing the command:

bpatch wink. a

Applying a Patch 65

Executable Image Utilities

The Watcom Patch Utility locates the file C: \ WATCOM BI NW WLI NK. EXE using the
PATH environment variable. The actual name of the executable file is extracted from thefile
WLI NK. A. It then verifiesthat the file to be patched is the correct one by comparing the size
of the file to be patched to the expected size. If the file sizes match, the program responds
with:

Ok to nodify ' C\WATCOM Bl N\ LI NK. EXE’ ? [y] n]

If you respond with "yes', BPATCH will modify the indicated file. If you respond with "no",
BPATCH aborts. Once the patch has been applied the resulting fileis verified. First thefile
sizeis checked to make sure it matches the expected file size. If the file size matches, a
check-sum is computed and compared to the expected check-sum.

Notes:

1. If anerror message isissued during the patch process, the file that you specified to
be patched will remain unchanged.

2. If asequence of patch files exist, such as "wlink.a", "wlink.b" and "wlink.c", the
patches must be applied in order. That is, "wlink.a" must be applied first followed
by "wlink.b" and finally "wlink.c".

6.3 Diagnostic Messages

66

If the patch cannot be successfully applied, one of the following error messages will be
displayed.

Usage: BPATCH {-p} {-q} {-b} <file>
-p = Do not prompt for confirmation
-b = Do not create a .BAK file
-q = Print current patch level of file
The command line was entered with no arguments.

File’%s has not been patched
This message isissued when the "-q" option is used and the file has not been
patched.

File'%s has been patched to level ' %s
This message isissued when the "-q" option is used and the file has been
patched to the indicated level.

Diagnostic Messages

The Watcom Patch Utility

File’%s has already been patched to level *%s’ - skipping
This message is issued when the file has already been patched to the same level
or higher.

Command line may only contain one file name
More than one file name is specified on the command line. Make surethat "/" is
not used as an option delimiter.

Command line must specify a file name
No file name has been specified on the command line.

"%s' isnot a Watcom patch file
The patch fileis not of the required format. The required header information is
not present.

"%s' isnot a valid Watcom patch file
The patch fileis not of the required format. The required header information is
present but the remaining contents of the file have been corrupted.

"%s’ isthewrong size (%lul). Should be (%lu2)
The size of the file to be patched (%lul) is not the same as the expected size
(%6lu2).

Cannot find* %s
Cannot find the executable to be patched.

Cannot open *%s
An error occurred while trying to open the patch file, the file to be patched or the
resulting file.

Cannot read ' %s
An input error occurred while reading the old version of the file being patched.

Cannot rename’ %s’ to '%s
The file to be patched could not be renamed to the backup file name or the
resulting file could not be renamed to the name of the file that was patched.

Cannot writeto’ %s
An output error occurred while writing to the new version of thefileto be
patched.

[/O error processing file’ %s
An error occurred while seeking in the specified file.

Diagnostic Messages 67

Executable Image Utilities

No memory for %s
An attempt to allocate memory dynamically failed.

Patch program aborted!
Thismessageisissued if you answered no to the "OK to modify" prompt.

Resulting file has wrong checksum (%lu) - Should be (%6lu2)
The check-sum of the resulting file (%lu) does not match the expected
check-sum (%lu2). This messageisissued if you have patched the wrong
version.

Resulting file haswrong size (%lul) - Should be (%lu2)

The size of the resulting file (%lul) does not match the expected size (%0lu2).
This message isissued if you have patched the wrong version.

68 Diagnostic Messages

[The Watcom Strip Utility

7.1 Introduction

The Watcom Strip Utility may be used to manipulate information that is appended to the end
of an executablefile. The information can be either one of two things:

1. Symbolic debugging information
2. Resourceinformation

Thisinformation can be added or removed from the executable file. Symbolic debugging
information is placed at the end of an executable file by the Watcom Linker or the Watcom
Strip Utility. Resourceinformation is placed at the end of an executable by aresource
compiler or the Watcom Strip Utility.
Once a program has been debugged, the Watcom Strip Utility allows you to remove the
debugging information from the executable file so that you do not have to remove the
debugging directives from the linker directive file and link your program again. Removal of
the debugging information reduces the size of the executable image.
All executable files generated by the Watcom Linker can be specified as input to the Watcom
Strip Utility. Note that for executable files created for Novell’s NetWare 386 operating
system, debugging information created using the "NOVELL" option in the "DEBUG"
directive cannot be removed from the executablefile. Y ou must remove the "DEBUG"
directive from the directive file and re-link your application.
The Watcom Strip Utility currently runs under the following operating systems.

* DOS

» 0S/2

* QONX

* Windows NT

* Windows 95

Introduction 69

Executable Image Utilities

7.2 The Watcom Strip Utility Command Line

The Watcom Strip Utility command line syntax is:

WSTRIP [optiong] input_file [output_file] [info_fil€]

where:

[l

options

input_file

output_file

info_file

The square brackets denote items which are optional .

/n (noerrors) Do not issue any diagnostic message.

/q (quiet) Do not print any informational messages.

Ir (resources) Process resource information rather than debugging
information.

/a (add) Add information rather than remove information.

isafile specification for the name of an executablefile. If no file extensionis
specified, the Watcom Strip Utility will assume one of the following extensions:
"exe", "dll", "exp", "rex", "nlm", "dsk", "lan", "nam", "gnx" or no file extension.
Note that the order specified in the list of file extensionsis the order in which
the Watcom Strip Utility will select file extensions.

isan optiona file specification for the output file. If nofile extensionis
specified, the file extension specified in the input file name will be used for the
output file name. If "." is specified, the input file name will be used.

isan optional file specification for the file in which the debugging or resource
information is to be stored (when removing information) or read (when adding
information). If no file extension is specified, afile extension of "sym" is
assumed for debugging information and "res" for resource information. To
specify the name of the information file but not the name of an output file, a"."
may be specified in place of output_file.

70 The Watcom Strip Utility Command Line

The Watcom Strip Utility

Description:

1

If the"r" (resource) option is not specified then the default action isto add/remove
symbolic debugging information.

If the"a" (add) option is not specified then the default action isto remove
information.

If output_file is not specified, the debugging or resource information is added to or
removed from input_file.

If output_file is specified, input_fileis copied to output_file and the debugging or
resource information is added to or removed from output_file. input_file remains
unchanged.

If info_fileis specified then the debugging or resource information that is added to
or removed from the executable fileis read from or written to thisfile. The
debugging or resource information may be appended to the executable by
specifying the "a"' (add) option. Also, the debugging information may be appended
to the executable by concatenating the debugging information file to the end of the
executable file (the files must be treated as binary files).

During processing, the Watcom Strip Utility will create atemporary file, ensuring
that afile by the chosen name does not already exist.

7.3 Strip Utility Messages

The following messages may be issued by the Watcom Strip Utility.

Usage: WSTRIP [optiong] input_file [output_file] [info_fil€]

options: (-option is also accepted)
/n don’t print warning messages
/g don’t print informational messages
/v process resource information rather than debugging information
/a add information rather than delete information
input_file: executablefile
output_file: optional output executableor *.’
info_file: optional output debugging or resource information file
or input debugging or resource informational file
The command line was entered with no arguments.

Strip Utility Messages 71

Executable Image Utilities

Too low on memory
There is not enough free memory to allocate file buffers.

Unableto find’%s
The specified file could not be located.

Cannot create temporary file
All the temporary file names arein use.

Unable to open '%s' toread
Theinput executable file cannot be opened for reading.

'%s isnot a valid executablefile
The input file has invalid executable file header information.

"%s' does not contain debugging information
There is nothing to strip from the specified executablefile.

Seek error on ' %s
An error occurred during a seek operation on the specified file.

Unableto create output file’ %s
The output file could not be created. Check that the output disk is not
write-protected or that the specified output fileis not marked "read-only".

Unableto create symbol file’ %s
The symbol file could not be created.

Error reading ' %s
An error occurred while reading the input executablefile.

Error writing to ' %s
An error occurred while writing the output executabl e file or the symbol file.
Check the amount of free space on the output disk. If the input and output files
reside on the same disk, there might not be enough room for a second copy of
the executabl e file during processing.

Cannot erasefile’ %s
Theinput executable file is probably marked "read-only" and therefore could not
be erased (the input file is erased whenever the output file has the same name).

Cannot rename file ' %s’

The output executable file could not be renamed. Ordinarily, this should never
occur.

72 Strip Utility Messages

The Make/Touch Utilities

The Make/Touch Utilities

74

8 The Watcom Make Utility

8.1 Introduction

The Watcom Make utility is useful in the development of programs and text processing but is
general enough to be used in many different applications. Make uses the fact that each file
has a time-stamp associated with it that indicates the last time the file was updated. Make
uses this time-stamp to decide which files are out of date with respect to each other. For
instance, if we have an input data file and an output report file we would like the output report
file to accurately reflect the contents of the input datafile. In terms of time-stamps, we would
like the output report to have a more recent time-stamp than the input data file (we will say
that the output report file should be "younger" than the input datafile). If theinput file had
been modified then we would know from the younger time-stamp (in comparison to the report
file) that the report file was out of date and should be updated. Make may be used in this and
many other situations to ensure that files are kept up to date.

Some readers will be quite familiar with the concepts of the Make file maintenance tool.
Watcom Make is patterned after the Make utility found on UNIX systems. The next major
section is simply intended to summarize, for reference purposes only, the syntax and options
of Make's command line and special macros. Subsequent sections go into the philosophy and
capabilities of Watcom Make. If you are not familiar with the capabilities of the Make utility,

we recommend that you skip to the next major section entitled "Dependency Declarations”
and read on.

8.2 Watcom Make Reference

The following sub-sections serve as a reference guide to the Watcom Make utility.

8.2.1 Watcom Make Command Line Format

The formal Watcom Make command line syntax is shown below.

Watcom Make Reference 75

The Make/Touch Utilities

WMAKE [options] [macro_defs] [targets]

Asindicated by the square brackets|], al items are optional .

options isalist of valid Watcom Make options, each preceded by aslash ("/") or adash
("-"). Options may be specified in any order.

macro_defs isalist of valid Watcom Make macro definitions. Macro definitions are of the
form:

A=B

and are readily identified by the presence of the "=" (the "#" character may be
used instead of the "=" character if necessary). Surround the definition with
quotes (") if it contains blanks (e.g., "debug_opt=debug all"). The macro
definitions specified on the command line supersede any macro definitions
defined in makefiles.

targets is one or more targets described in the makefile.

8.2.2 Watcom Make Options Summary

In this section, we present aterse summary of the Watcom Make options. This summary is
displayed on the screen by simply entering "WMAKE ?' on the command line.

Example:
Cwrake ?
/a make all targets by ignoring time-stamps
/b block/ignore all implicit rules
lc do not verify the existence of files made
/d debug mode - echo all work as it progresses
le always erase target after error/interrupt (disables prompting)
/f the next parameter is aname of dependency description file
/h do not print out Make identification lines (no header)
/i ignore return status of all commands executed
Kk on error/interrupt: continue on next target
Nl the next parameter is the name of a output log file
/m do not search for MAKEINIT file

76 Watcom Make Reference

The Watcom Make Utility

/ms Microsoft NMAKE mode

/n no execute mode - print commands without executing

/o use circular implicit rule path

Ip print the dependency tree as understood from the file

/q guery mode - check targets without updating them

Ir do not use default definitions

Is silent mode - do not print commands before execution

It touch filesinstead of executing commands

/u UNIX compatibility mode

/z do not erase target after error/interrupt (disables prompting)

8.2.3 Command Line Options

Command line options, available with Watcom Make, allow you to control the processing of

the makefile.

a
make all targets by ignoring time-stamps
The"d" option is a safe way to update every target. For program maintenance, it isthe
preferred method over deleting object files or touching source files.

b
block/ignore all implicit rules
The "b" option will indicate to Make that you do not want any implicit rule checking done.
The"b" option is useful in makefiles containing double colon ::" explicit rules because an
implicit rule search is conducted after a double colon "::" target is updated. Including the
directive . BLOCK in amakefile also will disable implicit rule checking.

C
do not verify the existence of files made
Make will check to ensure that atarget exists after the associated command list is executed.
The target existence checking may be disabled with the "c" option. The"c" option isuseful in
processing makefiles that were developed with other Make utilities. The . NOCHECK
directive may be used to disable target existence in a makefile.

d

debug mode - echo all work asit progresses

Watcom Make Reference 77

The Make/Touch Utilities

The"d" option will print out information about the time-stamp of files and indicate how the
makefile processing is proceeding.

always erase target after error/interrupt (disables prompting)
The"e" option will indicate to Make that, if an error or interrupt occurs during makefile

processing, the current target being made may be deleted without prompting. The . ERASE
directive may be used as an equivalent option in a makefile.

the next parameter is a name of dependency description file

The "f* option specifies that the next parameter on the command lineis the name of a
makefile which must be processed. If the "f" option is specified then the search for the default
makefile named "MAKEFILE" is not done. Any number of makefiles may be processed with
the "f" option.

Example:
wrake /f nyfile
wrake /f nyfilel /f nmyfile2

do not print out Make identification lines (no header)
The"h" option is useful for less verbose output. Combined with the"q" option, thisallows a

batch file to silently query if an application is up to date. Combined with the "n" option, a
batch file could be produced containing the commands necessary to update the application.

ignore return status of all commands executed

The"i" option is equivalent to the . | GNORE directive.

on error/interrupt: continue on next target
Make will stop updating targets when a non-zero statusis returned by a command. The "k"

option will continue processing targets that do not depend on the target that caused the error.
The . CONTI NUE directive in amakefile will enable this error handling capability.

78 Watcom Make Reference

The Watcom Make Utility

ms

the next parameter is the name of a output log file
Make will output an error message when a non-zero status is returned by a command. The"l"

option specifies afile that will record all error messages output by Make during the processing
of the makefile.

do not search for the MAKEINIT file

The default action for Make is to search for an initiaization file called "MAKEINIT". The
"m" option will indicate to Make that processing of the MAKEINIT fileis not desired.

Microsoft NMAKE mode

The default action for Make is to process makefiles using Watcom syntax rules. The"ms"
option will indicate to Make that it should process makefiles using Microsoft syntax rules.
For example, the line continuation in NMAKE is abackslash ("\") at the end of the line.

no execute mode - print commands without executing

The"n" option will print out what commands should be executed to update the application
without actually executing them. Combined with the "h" option, a batch file could be
produced which would contain the commands necessary to update the application.

Example:
wnake /h /n >updat e. bat
updat e

Thisisuseful for applications which require all available resources (memory and devices) for
executing the updating commands.

use circular implicit rule path
When this option is specified, Make will use acircular path specification search which may

save on disk activity for large makefiles. The"o" option isequivalent to the . OPTI M ZE
directive.

Watcom Make Reference 79

The Make/Touch Utilities

print out makefile information

The"p" option will cause Make to print out information about all the explicit rules, implicit
rules, and macro definitions.

guery mode - check targets without updating them

The"q" option will cause Make to return a status of 1 if the application requires updating; it
will return a status of O otherwise. Hereis a example batch file using the "q" option:

Example:
wrake /g
if errorstatus 0 goto noupdate
wnake /g /h /n >\tnp\update. bat
call \tnp\update. bat
: noupdat e

do not use default definitions

The default definitions are:

80 Watcom Make Reference

The Watcom Make Utility

__MAKEOPTS__ = <options passed to WVAKE>
__MAKEFI LES__ = <list of nmkefil es>

__VERSI ON__ = <versi on nunber >

__LOADDLL__= defined if DLL |oading supported
__MBDOS__ = defined if MS/ DGCS version
__WNDON5__ = defined if Wndows version
__NT__ = defined if Wndows NT version
__NT386__ = defined if 32-bit Wndows NT version
__0S2__ = defined if OS/ 2 version

__ONX__ = defined if Q\X version

#endi f

clear .EXTENSIONS |i st

. EXTENSI ONS:

In general,
set .EXTENSIONS list as foll ows
.EXTENSI ONS: .exe .nlm.dsk .lan .exp &
.lib .obj &
&
.asm.c .cpp .cxx .cc .for .pas .cob &
.h .hpp .hxx .hh . fi .mf .inc

For Microsoft NMAKE compatibility (when you use the "ms" option), the following default
definitions are established.

Watcom Make Reference 81

The Make/Touch Utilities

For M crosoft

NVAKE conpatibility swtch,

as foll ows
.asm.c
for .f

.Cpp .CXX &
.f90 .pas .res

. cpp
/lc $*.cpp
$*. cxx
$*. cxx
bas

$*. exe;

.f
$* . f
f90

$*.f90

set .EXTENSI ONS |i st
. EXTENSI ONS: . exe . obj
.bas .cbl .

AS=ni
BC=bc
CC=cl
COBOL=cobo
CPP=cl
CXX=cl
FOR=f |
PASCAL=pl
RC=rc
.asm exe:

$(AS) $(AFLAGS) $*.
.asm obj :

$(AS) $(AFLAGS) /c
. C. exe:

$(CC) $(CFLAGS) $*.
.C.o0bj:

$(CCO $(CFLAGS) /c
. Cpp. exe:

$(CPP) $(CPPFLAGS)
. Cpp. obj :

$(CPP) $(CPPFLAGS)
. CXX. exe:

$(CXX) $(CXXFLAGS)
. CXX. obj :

$(CXX) $(CXXFLAGS)
. bas. obj :

$(BC) $(BFLAGS) $*.
. cbl . exe:

$(COBOL) $(COBFLAGS) $*.chl,
. Ccbl . obj:

$(COBAL) $(COBFLAGS) $*.chl;
.. exe:

$(FOR) $(FFLAGS) $*
.f.obj:

$(FOR) /c $(FFLAGS)
. 190. exe:

$(FOR) $(FFLAGS) $*.
.190. obj :

$(FOR) /c $(FFLAGS)
.for.exe:

$(FOR) $(FFLAGS) $*.

.for.obj:

82 Watcom Make Reference

for

.rc

The Watcom Make Utility

$(FOR) /c $(FFLAGS) $*.for
. pas. exe:

$(PASCAL) $(PFLAGS) $*. pas
. pas. obj :

$(PASCAL) /c $(PFLAGS) $*.pas
.rc.res:

$(RC) $(RFLAGS) /r $*

For OS2, the __MBSDOS__ macro will bereplaced by __0S2__ and for Windows NT, the

__BDOS__ macro will bereplacedby __NT__. The"r" option will disable these
definitions before processing any makefiles.

silent mode - do not print commands before execution

The"s' option isequivalent to the . SI LENT directive.

touch filesinstead of executing commands
Sometimes there are changes which are purely cosmetic (adding a comment to a source file)
that will cause targets to be updated needlessly thus wasting computer resources. The "t"

option will make files appear younger without altering their contents. The "t" option is useful
but should be used with caution.

UNIX compatibility mode

The"u" option will indicate to Make that the line continuation character should be a backslash
"\" rather than an ampersand "&".

do not erase target after error/interrupt (disables prompting)
The"z" option will indicate to Make that if an error or interrupt occurs during makefile

processing then the current target being made should not be deleted. The . HOLD directivein
amakefile has the same effect asthe "z" option.

Watcom Make Reference 83

The Make/Touch Utilities

8.2.4 Special Macros

Watcom Make has many different special macros. Here are some of the simpler ones.

Macro Expansion

$$ represents the character "'$"

$# represents the character "#"

$@ full file name of the target

& target with the extension removed

$< list of all dependents

$? list of dependents that are younger than the target

The following macros are for more sophisticated makefiles.

Macro Expansion

__MSDOS__ This macro is defined in the MS/DOS environment.

_ NT__ This macro is defined in the Windows NT environment.

02 This macro is defined in the OS/2 environment.

__ MAKEOPTS contains all of the command line options that WMAKE was invoked

with except for the "f" options

_ MAKEFILES _ contains the names of all of the makefiles processed at the time of
expansion (includes the file currently being processed)

The next three tables contain macros that are valid during execution of command lists for
explicit rules, implicit rules, and the . ERROR directive. The expansion is presented for the
following example:

Example:
a:\dir\target.ext : b:\dirl\depl. exl c:\dir?2\dep2. ex2
Macro Expansion
9@ a\dir\target.ext
g a\dir\target
& target

84 Watcom Make Reference

The Watcom Make Utility

. target.ext

RN a\din

Macro Expansion

3@ b:\dirl\depl.ex1
H* b:\dirl\dep1
& depl

9. depl.exl

$: b:\dir1\

Macro Expansion

S @ c:\dir2\dep2.ex2
$)* c:\dir2\dep2
$& dep2

3. dep2.ex2

9 c:\dir2\

8.3 Dependency Declarations

In order for Watcom Make to be effective, alist of file dependencies must be declared. The
declarations may be entered into atext file of any name but Make will read afile called
"MAKEFILE" by default if it isinvoked as follows:

Example:
Cwrake

If you want to use afile that isnot called "MAKEFILE" then the command line option "f" will
cause Make to read the specified file instead of the default "MAKEFILE".

Example:
Cwrake /f nyfile

We will now go through an example to illustrate how Make may be used for asimple

application. Suppose we have an input file, areport file, and a report generator program then
we may declare a dependency as follows:

Dependency Declarations 85

The Make/Touch Utilities

#
(a comment in a makefile starts with a "#")
sinpl e dependency decl aration
#
bal ance. |l st : |edger. dat
dor eport

Note that the dependency declaration starts at the beginning of aline while commands always
have at least one blank or tab before them. Thisform of a dependency declaration is called an
explicit rule. Thefile"BALANCE.LST" iscalled the target of the rule. The dependent of the
ruleisthefile "LEDGER.DAT" while "DOREPORT" forms one line of the rule command
list. The dependent is separated from the target by a colon.

Hint: A good habit to develop is to always put spaces around the colon so that it will not
be confused with drive specifications (e.g., &).

The explicit rule declaration indicates to Make that the program "DOREPORT" should be
executed if "LEDGER.DAT" isyounger than "BALANCE.LST" or if "BALANCE.LST" does
not yet exist. In general, if the dependent file has a more recent modification date and time
than the target file then Watcom Make will execute the specified command.

Note: The terminology employed hereis used by S.I.Feldman of Bell Laboratoriesin
Make - A Program for Maintaining Computer Programs. Confusion often arises from the
use of the word "dependent"”. In this context, it means "a subordinate part”. Inthe
example, "LEDGER.DAT" is a subordinate part of the report "BALANCE.LST".

8.4 Multiple Dependents

Suppose that our report "BALANCE.LST" becomes out-of-date if any of the files
"LEDGER.DAT", "SALES.DAT" or "PURCHASE.DAT" are modified. We may modify the
dependency rule as follows:

#

mul tiple dependents rule

#

bal ance. |l st : |edger.dat sal es.dat purchase. dat

dor eport

86 Multiple Dependents

The Watcom Make Utility

Thisis an example of arule with multiple dependents. In this situation, the program
"DOREPORT" should be executed if any of "LEDGER.DAT", "SALES.DAT" or
"PURCHASE.DAT" are younger than "BALANCE.LST" or if "BALANCE.LST" does not
yet exist. In cases where there are multiple dependents, if any of the dependent files has a
more recent modification date and time than the target file then Watcom Make will execute
the specified command.

8.5 Multiple Targets

Suppose that the "DOREPORT" program produces two reports. If both of these reports
require updating as aresult of modification to the dependent files, we could change the rule as

follows:
#
multiple targets and multiple dependents rule
#
bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport

Suppose that you entered the command:

wrake

which causes Make to start processing the rules described in "MAKEFILE". In the case
where multiple targets are listed in the makefile, Make will, by default, process only the first
target it encounters. In the example, Make will check the date and time of "BALANCE.LST"
against its dependents since thisisthe first target listed.

To indicate that some other target should be processed, the target is specified as an argument
to the Make command.

Example:
wrake sunmary. | st

There are a number of interesting points to consider:
1. By default, Make will only check that the target file exists after the command
("DOREPORT" in this exampl€) is executed. It does not check that the target’s

time-stamp shows it to be younger. If the target file does not exist after the
command has been executed, an error is reported.

Multiple Targets 87

The Make/Touch Utilities

2. Thereisno guarantee that the command you have specified does update the target
file. In other words, smply because you have stated a dependency does not mean
that one exists.

3. Furthermore, it is not implied that other targetsin our list will not be updated. In
the case of our example, you can assume that we have designed the "doreport”
command to update both targets.

8.6 Multiple Rules

A makefile may consist of any humber of rules. Note that the following:

targetl target2 : dependentl dependent2 dependent 3
conmand |i st

is equivalent to:

targetl : dependentl dependent2 dependent 3
command |i st

target2 : dependentl dependent2 dependent 3
command |i st

Also, the rules may depend on the targets of other rules.

#

rule 1: this rule uses rule 2

#

bal ance. |l st sumary.| st : |edger.dat sal es.dat purchase. dat
doreport

#

rule 2. used by rules 1 and 3

#

sal es. dat : canada. dat engl and. dat usa. dat
dosal es

#

rule 3: this rule uses rule 2

#

year.| st : |edger.dat sal es.dat purchase. dat
doyearly

88 Multiple Rules

The Watcom Make Utility

The dependents are checked to seeif they are the targets of any other rulesin the makefilein
which case they are updated. This process of updating dependents that are targets in other
rules continues until aruleis reached that has only simple dependents that are not targets of
rules. At thispoint, if thetarget does not exist or if any of the dependents is younger than the
target then the command list associated with the rule is executed.

Hint: Theterm "updating", in this context, refers to the process of checking the
time-stamps of dependents and running the specified command list whenever they are
out-of-date. Whenever adependent is the target of some other rule, the dependent must be
brought up-to-date first. Stated another way, if "A" dependson "B" and "B" depends on
"C" and "C" isyounger than "B" then we must update "B" before we update "A".

Make will check to ensure that the target exists after its associated command list is executed.
The target existence checking may be disabled in two ways:

1. usethe command line option "c"
2. usethe. NOCHECK directive.

The rule checking returns to the previous rule that had the target as a dependent. Upon

returning to the rule, the command list is executed if the target does not exist or if any of the
updated dependents are now younger than the target. If you were to type:

whake

here are the steps that would occur with the previous makefile:

Multiple Rules 89

The Make/Touch Utilities

updat e(bal ance.lst) (rule 1)

updat e(| edger . dat) (not a target)
updat e(sal es. dat) (found rule 2)
updat e(canada. dat) (not a target)
updat e(engl and. dat) (not a target)
updat e(usa. dat) (not a target)
| F sal es. dat does not exi st OR

any of (canada. dat, engl and. dat, usa. dat)
i s younger than sal es. dat
THEN execut e "dosal es"

updat e(pur chase. dat) (not a target)
| F bal ance. | st does not exi st OR
any of (| edger.dat, sal es. dat, purchase. dat)
i s younger than (bal ance. |l st)
THEN execute "doreport™

Thethird rule in the makefile will not be included in this update sequence of steps. Recall
that the default target that is "updated” isthe first target in the first rule encountered in the
makefile. Thisisthe default action taken by Make when no target is specified on the
command line. If you wereto type:

wnake year. | st

then thefile"YEAR.LST" would be updated. AsMakereadstherulesin"MAKEFILE", it
discovers that updating "Y EAR.LST" involves updating "SALES.DAT". The update
sequence is similar to the previous example.

8.7 Automatic Dependency Detection (AUTODEPEND)

Explicit listing of dependencies in amakefile can often be tedious in the development and
maintenance phases of aproject. The Watcom F77 compiler will insert dependency
information into the object file asit processes source files so that a complete snapshot of the
files necessary to build the object file are recorded. Since all files do not have dependency
information contained within them in a standard form, it is necessary to indicate to Make
when dependencies are present.

To illustrate the use of the . AUTODEPEND directive, we will show itsusein an implicit rule
and in an explicit rule.

90 Automatic Dependency Detection ((AUTODEPEND)

The Watcom Make Utility

#
. AUTODEPEND exanpl e
#
.for.obj: . AUTODEPEND
wf c386 $[* $(conpil e_options)

test.exe : a.obj b.obj c.obj test.res
W ink FILE a.obj, b.obj, c.obj
wec /q /bt=windows test.res test.exe

test.res : test.rc test.ico . AUTODEPEND
wc /ad /g /bt=windows /r $[@$"@

In the above example, Make will use the contents of the object file to determine whether the
object file has to be built during processing. The Watcom Resource Compiler can also insert
dependency information into a resource file that can be used by Make.

8.8 Targets Without Any Dependents (.SYMBOLIC)

There must always be at least onetarget in arule but it is not necessary to have any
dependents. If atarget does not have any dependents, the command list associated with the
rule will always be executed if the target is updated.

Y ou might ask, "What may arule with no dependents be used for?'. A rule with no
dependents may be used to describe actions that are useful for the group of files being
maintained. Possible usesinclude backing up files, cleaning up files, or printing files.

Toillustrate the use of the . SYMBCOLI Cdirective, we will add two new rules to the previous
example. First, wewill omit the . SYMBOLI Cdirective and observe what will happen when it
is not present.

#
rule 4: backup the data files
#
backup :
echo "insert backup disk”
pause
copy *.dat a:
echo "backup conpl ete"

Targets Without Any Dependents ((SYMBOLIC) 91

The Make/Touch Utilities

#
rule 5: cleanup tenporary files
#
cl eanup :
del *.tnp
del \tnp*.*

and then execute the command:

wrake backup

Make will execute the command list associated with the "backup" target and issue an error
message indicating that the file "BACKUP" does not exist after the command list was
executed. The same thing would happen if we typed:

wrake cl eanup

In this makefile we are using "backup" and "cleanup" to represent actions we want performed.
The names are not real files but rather they are symbolic names. This special type of target
may be declared with the . SYMBOLI Cdirective. Thistime, we show rules 4 and 5 with the
appropriate addition of . SYMBOLI Cdirectives.

#
rule 4: backup the data files
#
backup : .SYMBCOLI C
echo "insert backup disk"
pause
copy *.dat a:
echo "backup conpl ete”

#
rule 5: cleanup tenporary files
#
cleanup : .SYMBOLIC
del *.tnp
del \tnp*. *

The use of the . SYMBOLI Cdirective indicates to Make that the target should always be
updated internally after the command list associated with the rule has been executed. A short
form for the common idiom of singular . SYMBOLI Ctargets like:

target : .SYMBOLIC
conmands

92 Targets Without Any Dependents (.SYMBOLIC)

The Watcom Make Utility

t ar get
conmands

Thiskind of target definition is useful for many types of management tasks that can be
described in a makefile.

8.9 Preserving Targets (.PRECIOUS)

Most operating system utilities and programs have special return codes that indicate error
conditions. Watcom Make will check the return code for every command executed. If the
return code is non-zero, Make will stop processing the current rule and optionally delete the
current target being updated. If afileis precious enough that this treatment of return codesis
not wanted then the . PRECI OUS directive may be used. The . PRECI QUS directive
indicates to Make that the target should not be deleted if an error occurs during the execution
of the associated command list. Here isan example of the . PRECI OUS directive:

#

. PRECI QUS exanpl e

#

bal ance. | st summary.|st : |edger.dat sal es.dat purchase.dat .PRECH OUS
dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will not
attempt to delete "BALANCE.LST" or "SUMMARY .LST". If only one of thefilesis
precious then the makefile could be coded as follows:

#

. PRECI QUS exanpl e

#

bal ance. st : . PREC QUS

bal ance. |l st summary.| st : |edger.dat sal es.dat purchase. dat

dor eport

Thefile"BALANCE.LST" will not be deleted if an error occurs while the program
"DOREPORT" is executing.

Preserving Targets (.PRECIOUS) 93

The Make/Touch Utilities

8.10 Ignoring Return Codes (.IGNORE)

94

Some programs do not have meaningful return codes so for these programs we want to ignore
the return code completely. There are different waysto ignore return codes namely,

1. usethe command line option "i"
2. puta"-"infront of specific commands, or
3. usethe. | GNORE directive.

In the following example, the rule:

#

ignore return code exanple

#

bal ance. |l st summary.| st : |edger.dat sal es.dat purchase. dat

- doreport
will ignore the return status from the program "DOREPORT". Using the dash in front of the
command is the preferred method for ignoring return codes because it allows Make to check
all the other return codes.

The. | GNORE directive is used as follows:

#

.1 GNORE exanpl e

#

. | GNORE

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport

Using the . | GNORE directive will cause Make to ignore the return code for every command.
The"i" command line option and the . | GNORE directive prohibit Make from performing any
error checking on the commands executed and, as such, should be used with caution.

Another way to handle non-zero return codes is to continue processing targets which do not
depend on the target that had a non-zero return code during execution of its associated
command list. There are two ways of indicating to Make that processing should continue after
anon-zero return code:

1. usethe command line option "k"
2. usethe. CONTI NUE directive.

Ignoring Return Codes (.IGNORE)

The Watcom Make Utility

8.11 Erasing Targets After Error ((ERASE)

Most operating system utilities and programs have special return codes that indicate error
conditions. Watcom Make will check the return code for every command executed. If the
return code is non-zero, Make will stop processing the current rule and optionally delete the
current target being updated. By default, Make will prompt for deletion of the current target.
The . ERASE directive indicates to Make that the target should be deleted if an error occurs
during the execution of the associated command list. No prompt isissued in thiscase. Hereis
an example of the . ERASE directive:

#

. ERASE exanmpl e

#

. ERASE

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will attempt
to delete "BALANCE.LST" or "SUMMARY .LST" depending on which it was updating.

8.12 Preserving Targets After Error ((HOLD)

Most operating system utilities and programs have special return codes that indicate error
conditions. Watcom Make will check the return code for every command executed. If the
return code is non-zero, Make will stop processing the current rule and optionally delete the
current target being updated. By default, Make will prompt for deletion of the current target.
The . HOLD directive indicates to Make that the target should not be deleted if an error occurs
during the execution of the associated command list. No prompt isissued in thiscase. The

. HOLD directiveis similar to . PRECI OUS but appliesto all targets listed in the makefile.
Here is an example of the . HOLD directive:

#

. HOLD exanpl e

#

. HOLD

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport

If the program "DOREPORT" executes and its return code is non-zero then Make will not
delete "BALANCE.LST" or "SUMMARY .LST".

Preserving Targets After Error (HOLD) 95

The Make/Touch Utilities

8.13 Suppressing Terminal Output (.SILENT)

As commands are executed, Watcom Make will print out the current command beforeitis
executed. It is possible to execute the makefile without having the commands printed. There
are three ways to inhibit the printing of the commands before they are executed, namely:

1. usethe command line option "s"
2. putan"@" infront of specific commands, or
3. usethe. SI LENT directive.

In the following example, therule;

#

silent conmand exanpl e

#

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

@lor eport

will prevent the string "doreport” from being printed on the screen before the command is
executed.

The. SI LENT directiveis used as follows:

#

. S| LENT exanpl e

#

. SI LENT

bal ance. |l st summary.|st : |edger.dat sal es.dat purchase. dat

dor eport

Using the . SI LENT directive or the"s" command line option will inhibit the printing of all
commands before they are executed.

At this point, most of the capability of Make may be realized. Methods for making makefiles
more succinct will be discussed.

96 Suppressing Terminal Output (.SILENT)

The Watcom Make Utility

8.14 Macros

Watcom Make has a simple macro facility that may be used to improve makefiles by making
them easier to read and maintain. A macro identifier may be composed from a string of
alphabetic characters and numeric characters. The underscore character isalso alowed in a
macro identifier. If the macro identifier starts with a"%" character, the macro identifier
represents an environment variable. For instance, the macro identifier "%path" represents the
environment variable "path”.

Macro identifiers Valid?
2morrow yes
stitch_in 9 yes
invalid~id no
2b_or_not_2b yes

% path yes
reports yes
l@#* % no

We will use a programming example to show how macros are used. The programming
example involves four FORTRAN 77 source files and two include files. Hereistheinitial
makefile (before macros):

#

progranmmi ng exanpl e
(before macros)

#

pl ot.exe : main.obj input.obj calc.obj output.obj
w ink @l ot

mai n.obj : main.for defs.fi globals.fi
wfc386 main /nf /dl /warn

calc.obj : calc.for defs.fi globals.fi
wfc386 calc /nf /dl /warn

input.obj : input.for defs.fi globals.fi
wfc386 input /nf /dl /warn

out put.obj : output.for defs.fi globals.fi
wfc386 output /nf /dl /warn

Macros become useful when changes must be made to makefiles. If the programmer wanted
to change the compiler options for the different compiles, the programmer would have to

Macros 97

The Make/Touch Utilities

make a global change to the makefile. With this simple example, it is quite easy to make the
change but try to imagine a more complex example with different programs having similar
options. The global change made by the editor could cause problems by changing the options
for other programs. A good habit to develop is to define macros for any programs that have
command line options. In our example, we would change the makefile to be:

#

progranm ng exanpl e

(after macros)

#

link_options =

conpil er = wfc386
conpile_options = /nf /dl /warn

pl ot.exe : main.obj input.obj calc.obj output.obj
w ink $(link_options) @l ot

mai n.obj : main.for defs.fi globals.fi
$(conpiler) main $(conpil e_options)

calc.obj : calc.for defs.fi globals.fi
$(conpiler) calc $(conpile_options)

i nput.obj : input.for defs.fi globals.fi
$(conpiler) input $(conpile_options)

out put.obj : output.for defs.fi globals.fi
$(conpiler) output $(conpile_options)

A macro definition consists of a macro identifier starting on the beginning of the line followed
by an "=" which in turn is followed by the text to be replaced. A macro may be redefined,
with the latest declaration being used for subsequent expansions (no warning is given upon
redefinition of amacro). The replacement text may contain macro references.

A macro reference may occur in two forms. The previous example illustrates one way to
reference macros whereby the macro identifier is delimited by "$(" and ")". The parentheses
are optional so the macros "compiler" and "compile_options" could be referenced by:

mai n.obj : main.for defs.fi globals.fi
$conpi l er nain $conpil e_options

Certain ambiguities may arise with this form of macro reference. For instance, examine this
makefile fragment:

98 Macros

The Watcom Make Utility

Example:
tenmporary_dir = \tm\
tenporary file = $tenporary_dirtnp000.tnp

Theintention of the declarations is to have a macro that will expand into afile specification
for atemporary file. Make will collect the largest identifier possible before macro expansion
occurs. The macro referenceis followed by text that looks like part of the macro identifier
("tmp000") so the macro identifier that will be referenced will be "temporary_dirtmp000".
The incorrect macro identifier will not be defined so an error message will be issued.

If the makefile fragment was:

temporary_dir = \tnmp\
temporary file = $(tenporary dir)tnmp000.tnp

there would be no ambiguity. The preferred way to reference macrosis to enclose the macro
identifier by "$(" and ")".

Macro references are expanded immediately on dependency lines (and thus may not contain
references to macros that have not been defined) but other macro references have their
expansion deferred until they are used in acommand. In the previous example, the macros
"link_options’, "compiler”, and "compile_options" will not be expanded until the commands
that reference them are executed.

Another use for macrosis to replace large amounts of text with a much smaller macro
reference. In our example, we only have two include files but suppose we had very many
include files. Each explicit rule would be very large and difficult to read and maintain. We
will use the previous example makefile to illustrate this use of macros.

#

progranmi ng exanpl e

(Wi th nore macros)

#

link _options =

conpil er = wfc386
conpile_options = /nf /dl /warn

include_files = defs.fi globals.fi

object _files = main.obj input.obj calc.obj &
out put . obj

Macros 99

The Make/Touch Utilities

pl ot.exe : $(object _files)
wink $(link_options) @l ot

mai n.obj : main.for $(include_files)
$(conpiler) main $(conpil e_options)

calc.obj : calc.for $(include_files)
$(conpiler) calc $(conpil e options)

input.obj : input.for $(include_files)
$(conpiler) input $(conpile_options)

out put.obj : output.for $(include_files)
$(conpil er) output $(conpil e_options)

Notice the ampersand ("&") at the end of the macro definition for "object_files'. The
ampersand indicates that the macro definition continues on the next line. In general, if you
want to continue aline in a makefile, use an ampersand ("&") at the end of the line.

There are special macros provided by Make to access environment variable names. To access
the PATH environment variable in a makefile, we use the macro identifier "%path”. For
example, if we have the following line in acommand list:

Example:
echo $(%pat h)

it will print out the current value of the PATH environment variable when it is executed.

There are two other special environment macros that are predefined by Make. The macro
identifier "%cdrive" will expand into one letter representing the current drive. The macro
identifier "%cwd" will expand into the current working directory. These macro identifiers are
not very useful unless we can specify that they be expanded immediately. The
complementary macros "$+" and "$—" respectively turn on and turn off immediate expansion
of macros. The scope of the "$+" macro is the current line after which the default macro
expansion behaviour isresumed. A possible use of these macrosisillustrated by the
following example makefile.

#
$(%drive), $(%wd), $+, and $- exanple
#

dirl = $(%drive): $(%wd)
dir2 = $+ $(dirl) $-
exanple : .SYMBOLIC

cd ..

echo $(dir1)
echo $(dir2)

100 Macros

The Watcom Make Utility

Which would produce the following output if the current working directory is
C\WATCOM\SOURCE\EXAMPLE:

Example:
(command out put only)
C: \ WVATCOM SCURCE
C: \ WATCOM SCURCE\ EXAMPLE

The macro definition for "dir2" forces immediate expansion of the "%cdrive" and "%cwd"
macros thus defining "dir2" to be the current directory that Make was invoked in. The macro
"dirl" is not expanded until execution time when the current directory has changed from the
initial directory.

Combining the $+ and $— special macros with the special macro identifiers "%cdrive" and
"%cwd" isauseful makefile technique. The $+ and $— special macros are general enough to
be used in many different ways.

Constructing other macros is another use for the $+ and $-— specia macros. Make allows
macros to be redefined and combining this with the $+ and $- special macros, similar looking
macros may be constructed.

#

macro construction with $+ and $-

#

tenplate = filel. $(ext) file2. $(ext) file3.$(ext) filed. $(ext)
ext = dat

data_files = $+ $(tenplate) $-

ext = Ist

listing_files = $+ $(tenplate) $-

exanple : .SYMBOLIC
echo $(data_files)
echo $(listing_files)

This makefile would produce the following output:

Example:
filel.dat file2.dat file3.dat fil e4. dat
filel.lst file2.lst file3.lst file4d.lst

Adding more text to amacro can aso be done with the $+ and $- special macros.

Macros 101

The Make/Touch Utilities

#

macro addition with $+ and $-

#

objs = filel.obj file2.0bj file3. obj
objs = $+$(o0bjs)$- filed. obj

objs = $+$(objs)$- file5. obj

exanple : .SYMBOLIC
echo $(objs)

This makefile would produce the following output:

Example:
filel.obj file2.obj file3.0bj filed.obj file5. obj

Make provides a shorthand notation for this type of macro operation. Text can be added to a

macro by using the "+=" macro assignment. The previous makefile can be written as:
#
macro addition with +=
#

objs = filel.obj file2. obj file3.obj
objs += fil e4. obj
objs += fil eb. obj

exanmpl e : .SYMBOLIC
echo $(objs)

and still produce the same results. The shorthand notation "+=" supported by Make provides a
quick way to add more text to macros.

There are instances when it is useful to have macro identifiers that have macro references
contained in them. If you wanted to print out an informative message before linking the
executable that was different between the debugging and production version, we would
expressit asfollows:

102 Macros

The Watcom Make Utility

#
progranmmi ng exanpl e
(macro sel ection)

#

versi on = debuggi ng # debuggi ng version
msg_production = linking production version ..
nmsg_debuggi ng = |inki ng debug version ..

i nk_options_production =
I i nk_opti ons_debuggi ng = debug al
l'i nk_options = $(link_options_$(version))

conpiler = wfc386

conpil e_options_production = /nf /warn

conpi |l e_options_debugging = /nf /dl /warn
conpi l e_options = $(conpil e _options_$(version))

include_files = defs.fi globals.f
object _files = main.obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object _files)
echo $(nmsg_$(version))
wink $(link_options) @l ot

maei n.obj : main.for $(include files)
$(conpiler) main $(conpil e_options)

calc.obj : calc.for $(include_files)
$(conpiler) calc $(conpile_options)

i nput.obj : input.for $(include_files)
$(conpiler) input $(conpile_options)

output.obj : output.for $(include _files)
$(conpiler) output $(conpil e_options)

Take notice of the macro references that are of the form

$(<partial _macro_identifier>$(version))

The expansion of a macro reference begins by expanding any macros seen until a matching
right parenthesisisfound. The macro identifier that is present after the matching parenthesis
isfound will be expanded. The other form of macro reference namely:

Macros 103

The Make/Touch Utilities

$<macro_identifier>

may be used in asimilar fashion. The previous example would be of the form:

$<partial _macro_i dentifier>$version

Macro expansion occurs until a character that cannot be in a macro identifier isfound (on the
same line asthe "$") after which the resultant macro identifier is expanded. If you want two
macros to be concatenated then the line would have to be coded:

$(macrol) $(macr 02)

The use of parentheses is the preferred method for macro references because it completely
specifies the order of expansion.

In the previous example, we can see that the four command lines that invoke the compiler are
very similar in form. We may make use of these similarities by denoting the command by a
macro reference. We need to be able to define a macro that will expand into the correct
command when processed. Fortunately, Make can reference the first member of the
dependent list, the last member of the dependent list, and the current target being updated with
the use of some special macros. These specia macros have the form:

$<file_specifier><formqualifier>

where <file_specifier> is one of:

A represents the current target being updated
" represents the first member of the dependent list
" represents the last member of the dependent list

and <form_qualifier> is one of:

"@" full file name
o file name with extension removed
"&" file name with path and extension removed

file name with path removed

104 Macros

The Watcom Make Utility

path of file name

If thefile"D:\DIRI\DIR2ZANAME.EXT" isthe current target being updated then the following
example will show how the form qualifiers are used.

Macro Expansion for D:\DIR1\DIR2ANAME.EXT
@ D: \ DI R1\ DI R2\ NAME. EXT
$* D: \ DI R1\ DI R2\ NAME
& NAME
. NAME. EXT
N D: \ DI R1\ DI R2\
These special macros provide the capability to reference targets and dependentsin a variety of
ways.
#

progranmi ng exanpl e
(nore nacros)

#

versi on = debuggi ng # debuggi ng version
msg_production = |inking production version ...
nsg_debuggi ng = |inki ng debug version ...

i nk_options_production =
I i nk_opti ons_debuggi ng = debug all
l'i nk_options = $(link_options_$(version))

conpil e_options_production = /nf /warn

conpi |l e_options_debugging = /nf /dl /warn

conpi |l e_options = $(conpil e _options_$(version))
conpi | er _command = wfc386 $[* $(conpil e_options)
include_files = defs.fi globals.fi

object _files = main.obj input.obj calc.obj &
out put . obj

Macros 105

The Make/Touch Utilities

pl ot.exe : $(object _files)
echo $(msg_$(version))
wink $(link_options) @"*

mai n.obj : main.for $(include_files)
$(conpi | er _conmand)

calc.obj : calc.for $(include files)
$(conpi | er _command)

input.obj : input.for $(include_files)
$(conpi | er _command)

out put.obj : output.for $(include_files)
$(conpi | er _conmand)

This example illustrates the use of the special dependency macros. Notice the use of "$*" in
the linker command. The macro expands into the string "plot" since "plot.exe" isthe target
when the command is processed. The use of the specia dependency macrosis recommended
because they make use of information that is already contained in the dependency rule.

At this point, we know that macro references begin with a"$" and that comments begin with a
"#'. What happens if we want to use these characters without their special meaning? Make
has two special macros that provide these charactersto you. The specia macro "$$" will
resultin a"$" when expanded and "$#" will expand into a"#'. These special macros are
provided so that you are not forced to work around the special meanings of the"$" and "#"
characters.

8.15 Implicit Rules

Watcom Make is capable of accepting declarations of commonly used dependencies. These
declarations are called "implicit rules' as opposed to "explicit rules* which were discussed
previously. Implicit rules may be applied only in instances where you are able to describe a
dependency in terms of file extensions.

106 Implicit Rules

The Watcom Make Utility

Hint: Recall that afile extension isthe portion of the file name which follows the period.
In the file specification:

C: \ DOS\ ANSI . SYS

thefile extensionis"SYS".

Animplicit rule provides acommand list for a dependency between files with certain
extensions. The form of animplicit ruleisasfollows:

. <dependent _ext ensi on>. <t ar get _ext ensi on>:
<conmmand_| i st >

Implicit rules are used if afile has not been declared as atarget in any explicit rule or the file
has been declared as atarget in an explicit rule with no command list. For agiven target file,
asearch is conducted to seeif there are any implicit rules defined for the target file's
extension in which case Make will then check if the file with the dependent extension in the
implicit rule exists. If the file with the dependent extension exists then the command list
associated with the implicit rule is executed and processing of the makefile continues.

Other implicit rules for the target extension are searched in asimilar fashion. The order in
which the dependent extensions are checked becomes important if there is more than one
implicit rule declaration for atarget extension. If we have the following makefile fragment:

Example:
. pas. obj :
(command i st)
.for.obj:
(command i st)

an ambiguity arises. If we have atarget file"TEST.OBJ" then which do we check for first,
"TEST.PAS' or "TEST.FOR"? Make handles thiswith the . EXTENSI ONS directive. The
. EXTENSI ONS directive declares which extensions are allowed to be used in implicit rules
and how these extensions are ordered. The default . EXTENSI ONS declaration is:

. EXTENSI ONS:
.EXTENSIONS: .exe .exp .lib .obj .asm.c .for .pas .cob .h .fi .mf

A . EXTENSI ONS directive with an empty list will clear the . EXTENSI ONS list and any

previously defined implicit rules. Any subsequent . EXTENSI ONS directives will add
extensions to the end of thelist.

Implicit Rules 107

The Make/Touch Utilities

Hint: Thedefault . EXTENSI ONS declaration could have been coded as:

.EXTENSIONS:

.EXTENSIONS: .exe

.EXTENSIONS: .exp

.EXTENSIONS: .lib

.EXTENSIONS: .obj

.EXTENSIONS: .asm .c .for .pas.cob .h .fi .mif

with identical results.

Make will not allow any implicit rule declarations that use extensions that are not in the
current . EXTENSI ONS list. Returning to our makefile fragment:

. pas. obj :

(command i st)
.for.obj:

(command i st)

and our target file"TEST.OBJ', we now know that the . EXTENSI ONS list determinesin
what order the dependents "TEST.PAS' and "TEST.FOR" will betried. If the
.EXTENSIONS declarationiis:

Example:
. EXTENSI ONS:
. EXTENSI ONS: .exe .obj .asm.pas .for .c .cob

we can see that the dependent file "TEST.PAS" will betried first as a possible dependent with
"TEST.FOR" being tried next.

One apparent problem with implicit rules and their associated command listsis that they are
used for many different targets and dependents during the processing of a makefile. The same
problem occurs with commands constructed from macros. Recall that thereis a set of special
macros that start with "$™", "$[", or "$]" that reference the target, first dependent, or last
dependent of an explicit dependency rule. In animplicit rule there may be only one
dependent or many dependents depending on whether the rule is being executed for atarget
with asingle colon ":" or double colon "::" dependency. If the target hasasingle colon or
double colon dependency, the "$", "$[", and "$]" special macros will reflect the valuesin the
rule that caused the implicit rule to be invoked. Otherwise, if the target does not have a
dependency rule then the "$[" and "$]" special macros will be set to the same value, namely,
the file found in the implicit rule search.

108 Implicit Rules

The Watcom Make Utility

We will use the last programming example to illustrate a possible use of implicit rules.

#
progranm ng exanpl e
(inplicit rules)

#

versi on = debuggi ng # debuggi ng version
msg_production = linking production version ...
msg_debuggi ng = |inki ng debug version ...

i nk_options_production =
I i nk_opti ons_debuggi ng = debug all
link_options = $(link_options_$(version))

conpiler = wfc386

conpil e_options_production = /nf /warn

conpi |l e_options_debugging = /nf /dl /warn

conpi l e_options = $(conpil e _options_$(version))

include_files = defs.fi gl obals.fi
object _files = main.obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object _files)
echo $(nmsg_$(version))
wink $(link_options) @"*

.for.obj:

$(conpiler) $[* $(conpil e_options)
mai n. obj : main.for $(include_files)
calc.obj : calc.for $(include_files)
input.obj : input.for $(include_files)
out put.obj : output.for $(include_files)

Asthis makefile is processed, any time an object file is found to be older than its associated
source file or include files then Make will attempt to execute the command list associated with
the explicit rule. Since there are no command lists associated with the four object file targets,
an implicit rule search is conducted. Suppose "CALC.OBJ' was older than "CALC.FOR".
Thelack of acommand list in the explicit rule with "CALC.OBJ' as atarget causes the
".for.obj" implicit rule to be invoked for "CALC.OBJ'. Thefile"CALC.FOR" isfound to
exist so the commands

Implicit Rules 109

The Make/Touch Utilities

wf c386 calc /nf /dl /warn
echo |inking debug version ...
w i nk debug all @l ot

are executed. The last two commands are aresult of the compilation of "CALC.FOR"
producing a"CALC.OBJ' file that is younger than the "PLOT.EXE" file that in turn must be
generated again.

The use of implicit rulesis straightforward when al the files that the makefile deals with are
in the current directory. Larger applications may have filesthat are in many different
directories. Suppose we moved the programming example files to three sub-directories.
Files Sub-directory

include files \ EXAMPLE\ | NC

sourcefiles \ EXAMPLE\ SRC

rest \ EXAMPLE\ O

Now the previous makefile (located in the \EXAMPLE\O sub-directory) would look like this:

rogranm ng exanpl e
implicit rules)

CHOHH W
| —s

[%2])

=

=
inonon

\ exanpl e\i nc\ #sub-directory containing include files
\ exanpl e\ src\ #sub-directory containing source files
ver si on debuggi ng # debuggi ng version
msg_production = linking production version ...
nsg_debuggi ng = |inki ng debug version ...

i nk_options_production =
I'i nk_opti ons_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpil er = wfc386

conpi | e_options_production = /nf /warn

conpi |l e_opti ons_debugging = /nf /dl /warn
conpi | e_options = $(conpil e_options_$(version))

include files = $(i _dir)defs.fi $(i _dir)globals.f

object _files = main.obj input.obj calc.obj &
out put . obj

110 Implicit Rules

The Watcom Make Utility

pl ot.exe : $(object _files)
echo $(nmsg_$(version))
wink $(link_options) @"*

.for.obj:
$(conpiler) $[* $(conpile_options)

main.obj : $(s_dir)main.for $(include files)

calc.obj : $(s_dir)calc.for $(include_files)

input.obj : $(s_dir)input.for $(include_files)

output.obj : $(s_dir)output.for $(include_files)
Suppose "\EXAMPLE\O\CALC.OBJ' was older than "\EXAMPLE\SRC\CALC.FOR". The
lack of acommand list in the explicit rule with "CALC.OBJ" as atarget causes the ".for.obj"
implicit rule to beinvoked for "CALC.OBJ'. At thistime, thefile
"\EXAMPLE\O\CALC.FOR" isnot found so an error is reported indicating that "CALC.OBJ'
could not be updated. How may implicit rules be useful in larger applicationsif they will only
search the current directory for the dependent file? We must specify more information about

the dependent extension (in this case ".FOR"). We do this by associating a path with the
dependent extension as follows:;

. <dependent _ext ensi on> : <pat h_specification>

This allows the implicit rule search to find the files with the dependent extension.

Hint: A valid path specification is made up of directory specifications separated by

semicolons (';"). Here are some path specifications:

D ;C\DGCS; C\UTILS; C\\WC
C.\ SYSs
A:\BIN; D

Notice that these path specifications are identical to the form required by the operating
system shell’s "PATH" command.

Our makefile will be correct now if we add the new declaration as follows:

#

progranm ng exanpl e

(implicit rules)

#

i_dir = \exanpl e\inc\ #sub-directory containing include files
s dir = \exanpl e\ src\ #sub-directory containing source files
versi on = debuggi ng # debuggi ng version

Implicit Rules 111

The Make/Touch Utilities

nmsg_production = linking production version ...
nmsg_debuggi ng = |inki ng debug version ...

i nk_options_production =
I'i nk_opti ons_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

conpil er = wfc386

conpi | e_options_production = /nf /warn

conpi |l e_opti ons_debugging = /nf /dl /warn
conpi | e_options = $(conpil e_options_$(version))

include files = $(i _dir)defs.fi $(i _dir)globals.f
object _files = main.obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object _files)
echo $(nmsg_$(version))
W ink $(link_options) @"*

.for: $(s_dir)
.for.obj:
$(compiler) $[* $(conpile_options)

mai n.obj : $(s_dir)main.for $(include_files)

calc.obj : $(s_dir)calc.for $(include_files)

input.obj : $(s_dir)input.for $(include_files)

output.obj : $(s_dir)output.for $(include_files)
Suppose "\EXAMPLE\O\CALC.OBJ" isolder than "\EXAMPLE\SRC\CALC.FOR". The
lack of acommand list in the explicit rule with "CALC.OBJ" as atarget will cause the
" for.obj" implicit rule to be invoked for "CALC.OBJ'. The dependent extension ".FOR" has

a path associated with it so the file \EXAMPLE\SRC\CALC.FOR" isfound to exist. The
commands

wf c386 \ EXAMPLE\ SRC\ CALC /nf /d1 /warn

echo linking debug version ...
w i nk debug all @l ot

are executed to update the necessary files.
If the application requires many source filesin different directories Make will search for the

files using their associated path specifications. For instance, if the current example files were
setup as follows:

112 Implicit Rules

The Watcom Make Utility

Sub-directory Contents

\EXAMPLE\INC
DEFS. FI , GLOBALS. FI

\EXAMPLE\SRC\PROGRAM
MAI N. FOR, CALC. FOR

\EXAMPLE\SRC\SCREEN
I NPUT. FOR, QUTPUT. FOR

\EXAMPLE\O
PLOT. EXE, MAKEFI LE, MAI N. OBJ, CALC. OBJ, | NPUT. OBJ,
QUTPUT. OBJ

the makefile would be changed to:

#
progranm ng exanpl e
(implicit rules)
#
i_dir ..\inc\ # sub-directory with include files

sub-directories with FORTRAN 77 source files
..\for\programl # - MAIN. FOR CALC FOR

..\for\screen\ # - |INPUT.FOR QUTPUT. FOR

program.dir
screen_dir

ver si on debuggi ng # debuggi ng version
msg_production = linking production version ...
nsg_debuggi ng = |inki ng debug version ...

i nk_options_production =
I i nk_opti ons_debuggi ng = debug all
l'ink_options = $(link_options_$(version))

conpil er = wfc386

conpi | e_options_production = /nf /warn

conpi |l e_opti ons_debugging = /nf /dl /warn

conpi | e_options = $(conpil e_options_$(version))

include files = $(i _dir)defs.fi $(i _dir)globals.fi
object _files = main.obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object _files)
echo $(nsg_$(version))
wink $(link_options) @"*

.for: $(programdir); $(screen_dir)

.for.obj:
$(conpiler) $[* $(conpile_options)

Implicit Rules 113

The Make/Touch Utilities

mai n.obj : $(programdir)main.for $(include_files)
calc.obj : $(programdir)calc.for $(include_files)
input.obj : $(screen_dir)input.for $(include_files)
output.obj : $(screen_dir)output.for $(include_files)

Suppose that there is a change in the "DEFS.FI" file which causes all the source filesto be
recompiled. Theimplicit rule".for.obj" isinvoked for every object file so the corresponding
".FOR" file must be found for each ".OBJ" file. We will show where Make searches for the
FORTRAN 77 source files.

updat e mai n. obj
t est ..\for\program nain. for (it does exist)
execute wfc386 ..\for\programimain /nf /dl /warn

updat e cal c. obj
t est ..\for\programcalc. for (it does exist)
execute wfc386 ..\for\programicalc /nf /dl /warn

updat e i nput . obj
t est ..\for\programinput.for (it does not exist)
t est ..\for\screen\input.for (it does exist)

execute wfc386 ..\for\screen\input /nf /dl /warn

updat e out put . obj
t est ..\ for\program out put. for (it does not exist)
t est ..\for\screen\output.for (it does exist)
execute wfc386 ..\for\screen\output /nf /dl /warn

etc.

Notice that Make checked the sub-directory ".\SRC\PRORGAM" for the files"INPUT.FOR"
and "OUTPUT.FOR". Make optionally may use a circular path specification search which
may save on disk activity for large makefiles. The circular path searching may be used in two
different ways:

1. usethe command line option "0"
2. usethe. OPTI M ZE directive.

Make will retain (for each suffix) what sub-directory yielded the last successful search for a
file. The search for afileisresumed at this directory in the hope that wasted disk activity will
be minimized. If thefile cannot be found in the sub-directory then Make will search the next
sub-directory in the path specification (cycling to the first sub-directory in the path
specification after an unsuccessful search in the last sub-directory).

Changing the previous example to include this feature, results in the following:

114 Implicit Rules

The Watcom Make Utility

#

programming exanpl e

(optimzed path searching)
#

.OPTIM ZE

i_dir

..\inc\ # sub-directory with include files

sub-directories with FORTRAN 77 source files
..\for\program # - MAIN FOR, CALC. FOR
..\for\screen\ # - |NPUT. FOR QUTPUT. FOR

program.dir
screen_dir

version debuggi ng # debuggi ng version
nmsg_production = |inking production version ...
nmsg_debuggi ng = |inking debug version ...

i nk_options_production =
i nk_opti ons_debuggi ng = debug al
link_options = $(link_options_$(version))

conpi l er = wf c386

conpi |l e_options_production = /nf /warn

conpi | e_opti ons_debugging = /nf /dl /warn
conpi | e_options = $(conpil e_options_$(version))

include files = $(i _dir)defs.fi $(i_dir)globals.f
object _files = nmain.obj input.obj calc.obj &
out put . obj

pl ot.exe : $(object _files)
echo $(nsg_$(version))
wink $(link_options) @"*

.for: $(programdir); $(screen_dir)
.for.obj:
$(conpiler) $[* $(conpile_options)

mai n.obj : $(programdir)min.for $(include_files)
calc.obj : $(programdir)calc.for $(include_files)
input.obj : $(screen_dir)input.for $(include_files)
output.obj : $(screen_dir)output.for $(include_files)

Suppose again that there is a change in the "DEFS.FI" file which causes all the sourcefilesto
be recompiled. We will show where Make searches for the FORTRAN 77 source files using
the optimized path specification searching.

updat e mai n. obj

t est ..\for\program nuin. for (it does exist)
execute wfc386 ..\for\programinmain /nf /dl /warn

updat e cal c. obj

t est ..\for\programcalc.for (it does exist)
execute wfc386 ..\for\programcalc /nf /dl /warn

Implicit Rules 115

The Make/Touch Utilities

updat e i nput . obj
t est ..\for\programi nput.for (it does not exist)
t est ..\for\screen\input.for (it does exist)

execute wfc386 ..\for\screen\input /nf /dl /warn

updat e out put . obj
t est ..\for\screen\output.for (it does exist)
execute wfc386 ..\for\screen\output /nf /dl /warn

etc.

Make did not check the sub-directory ".\SRC\PROGRAM" for the file"OUTPUT.FOR"
because the last successful attempt to find a".FOR" file occurred in the ".\SRC\SCREEN"
sub-directory. In thissmall example, the amount of disk activity saved by Makeis not
substantial but the savings become much more pronounced in larger makefiles.

Hint: The simple heuristic method that Make uses for optimizing path specification
searches namely, keeping track of the last successful sub-directory, is very effectivein
reducing the amount of disk activity during the processing of amakefile. A pitfall to
avoid is having two files with the same namein the path. The version of thefilethat is
used to update the target depends on the previous searches. Care should be taken when
using files that have the same name with path specifications.

Large makefiles for projects written in FORTRAN 77 may become difficult to maintain with
all theinclude file dependencies. Ignoring include file dependencies and using implicit rules
may reduce the size of the makefile while keeping most of the functionality intact. The
previous example may be made smaller by using thisidea.

progranm ng exanpl e
(no include dependenci es)

H HH

. OPTIM ZE

i_dir

..\inc\ # sub-directory with include files

sub-directories with FORTRAN 77 source files
..\for\program # - MAIN FOR, CALC. FOR
..\for\screen\ # - |INPUT.FOR COUTPUT. FOR

program.dir
screen_dir

version = debuggi ng # debuggi ng version
nmsg_production = |inking production version ...
msg_debuggi ng = |inking debug version ...

li nk_options_production =
i nk_opti ons_debuggi ng = debug al
l'ink_options = $(link_options_$(version))

116 Implicit Rules

The Watcom Make Utility

conpi l er = wf c386

conpil e_options_production = /nf /warn

conpi | e_opti ons_debugging = /nf /dl /warn

conpi | e_options = $(conpil e_options_$(version))

object _files = main.obj input.obj calc.obj &
out put . obj

plot.exe : $(object files)
echo $(nmsg_$(version))
wink $(link_options) @"*

.for: $(programdir); $(screen_dir)
.for.obj:
$(compiler) $[* $(conpile_options)

Implicit rules are very useful in this regard providing you are aware that you have to make up
for the information that is missing from the makefile. In the case of FORTRAN 77 programs,
you must ensure that you force Make to compile any programs affected by changesin include
files. Forcing Make to compile programs may be done by touching source files (not
recommended), deleting object files, or using the "a" option and targets on the command line.
Hereishow thefiles"INPUT.OBJ' and "MAIN.OBJ" may be recompiled if a changein some
include file affects both files.

Example:
del input. obj
del main. obj
whake

or using the "a" option

Example:
wrake /a i nput.obj main. obj

The possibility of introducing bugsinto programsis present when using this makefile
technique because it does not protect the programmer compl etely from object modules

becoming out-of-date. The use of implicit rules without header file dependenciesis aviable
makefile technique but it is not without its pitfalls.

8.16 Double Colon Explicit Rules

Single colon ":" explicit rules are useful in many makefile applications. However, the single
colon rule has certain restrictions that make it difficult to express more complex dependency
relationships. The restrictions imposed on single colon ":" explicit rules are:

1. only onecommand list is allowed for each target

Double Colon Explicit Rules 117

The Make/Touch Utilities

2. after the command list is executed, the target is considered up to date

Thefirst restriction becomes evident when you want to update atarget in different ways (i.e.,
when the target is out of date with respect to different dependents). The double colon explicit
rule removes this restriction.

#

multiple command lists

#

targetl :: dependentl dependent 2

conmmandl

targetl :: dependent3 dependent4
command?2

Noticethat if "targetl" is out of date with respect to either "dependent1” or "dependent2" then
"commandl" will be executed. The double colon"::" explicit rule does not consider the target
(in this case "target1") up to date after the command list is executed. Make will continue to
attempt to update "target1l”. Afterwards"command2" will be executed if "target1" is out of
date with respect to either "dependent3" or "dependent4”. It is possible that both "commandl”
and "command2" will be executed. Asaresult of the target not being considered up to date,
an implicit rule search will be conducted on "target1" also. Make will process the double
colon "::" explicit rulesin the order that they are encountered in the makefile.

8.17 Preprocessing Directives

One of the primary objectivesin using a make utility is to improve the development and
maintenance of projects. A programming project consisting of many makefiles in different
sub-directories may become unwieldy to maintain. The maintenance problem stems from the
amount of duplicated information scattered throughout the project makefiles. Make provides
amethod to reduce the amount of duplicated information present in makefiles. Preprocessing
directives provide the capability for different makefiles to make use of common information.

8.17.1 File Inclusion

A common solution to the "duplicated information" problem involves referencing text
contained in one file from many different files. Make supports file inclusion with the

I'i ncl ude preprocessing directive. The development of object libraries, using 16-bit
Watcom FORTRAN 77, for the different 80x86 16-bit memory models provides an ideal
exampletoillustrate the use of the ! i ncl ude preprocessing directive.

118 Preprocessing Directives

The Watcom Make Utility

Sub-directory Contents
\WINDOW W NDOW CVD, W NDOW M F

\WINDOW\INC
PROTO. FI, GLOBALS. FI, Bl OS_DEF. FI

\WINDOW\SRC
W NDOW FOR, KEYBOARD. FOR, MOUSE. FOR, BI OS. FOR

\WINDOW\BCSD
medium model object files, MAKEFI LE, W NDOW M LI B

\WINDOW\BCBD
large model object files, MAKEFI LE, W NDOW L. LI B

\WINDOW\BCHD
huge model object files, MAKEFI LE, W NDON.L. LI B

The WLIB command file "WINDOW.CMD" contains the list of library operations required to
build the libraries. The contents of "WINDOW.CMD" are:

- +wi ndow

- +bi os

- +keyboar d
- +mouse

The"—+" library manager command indicates to WLIB that the object file should be replaced
inthelibrary.

Thefile"WINDOW.MIF" contains the makefile declarations that are common to every
memory model. The".MIF" extension will be used for all the Make Include Files discussed in
thismanual. Thisextension isalso in the default extension list so it is arecommended
extension for Make include files. The contents of the "WINDOW.MIF" fileis asfollows:

Preprocessing Directives 119

The Make/Touch Utilities

#

exanpl e of a Make Include File

#

comon = /dl /warn # common options

obj s = wi ndow. obj bi os.obj keyboard. obj nouse. obj

.for: ..\src
.for.obj:
wfc $[* $(common) $(local) /nt(nodel)

wi ndow_$(nodel).lib : $(objs)
W ib w ndow $(nodel) @.\w ndow

The macros "model" and "local" are defined by the file "MAKEFILE" in each object
directory. Anexample of thefile"MAKEFILE" in the medium memory model object

directory is:
#
linclude exanpl e
#
nodel = m # menory nodel required
local = # menory nodel specific options

linclude ..\wi ndow. m f

Notice that changes that affect all the memory models may be made in one file, namely
"WINDOW.MIF". Any changesthat are specific to amemory model may be made to the
"MAKEFILE" in the object directory. To update the medium memory model library, the
following commands may be executed:

Example:
C>cd \ wi ndow\ bcsd
Cwrake

A DOS".BAT" or OS/2".CMD" file may be used to update all the different memory models.
If the following DOS"MAKEALL.BAT" (OS/2"MAKEALL.CMD") fileislocated
somewhere in the "PATH", we may update all the libraries.

cd \'wi ndow\ bcsd
wrake % %® 98 % % % % Y8 %O
cd \'wi ndow\ bchd
wrake % %® 98 % % % % Y8 9%®
cd \'wi ndow\ bchd
wrake % %R 98 % 9% %6 % Y8 %0

120 Preprocessing Directives

The Watcom Make Utility

The batch file parameters are useful if you want to specify options to Make. For instance, a
global recompile may be done by executing:

Example:
C>nmakeal | /a

The!i ncl ude preprocessing directive isagood way to partition common information so
that it may be maintained easily.

Another use of the ! i ncl ude involves program generated makefile information. For
instance, if we have a program called "WMKMK" that will search through source files and
generate afile called "WMKMK.MIF" that contains:

#
program generated nekefile infornation

FOR_ to_OBJ = $(conpiler) $[* $(conpil e_options)

OBJECTS = W NDOW OBJ BI 0S. OBJ KEYBOARD. OBJ MOUSE. OBJ

W NDOW OBJ : ..\ SRC\W NDOW FOR ..\ I NC\ PROTO FI ..\INC\ GLOBALS. FI
$(FOR_t 0_0OBJ)

BICS.OBJ : ..\SRCO\BICS. FOR ..\ I NC\ Bl OS_DEF. FI ..\ NC\ GLOBALS. FI
$(FOR_t 0_0OBJ)

KEYBQOARD. OBJ : ..\ SRC\ KEYBOARD. FOR ..\ I NC\ PROTO. FI ..\ NC\H GLOBALS. FI
$(FOR_t 0_0BJ)

MOUSE. OBJ : ..\ SRC\MOUSE. FOR ..\ I NC\ PROTO. FI ..\I1NC\H GLOBALS. FI
$(FOR_t 0_0BJ)

In order to use this program generated makefile information, we use a"MAKEFILE"
containing:

#

makefil e that nmakes use of generated nakefile information

#
conpile_options = /nf /dl /warn

first_target : window lib .SYMBOLIC
echo done

linclude wnknk. mf

wi ndow. | ib : $(OBJECTS)
W i b w ndow $(OBJECTS)

make : . SYMBOLIC
wknk /r . .\src*.for+..\inc

Notice that thereis a symbolic target "first_target” that is used asa"place holder". The
default behaviour for Makeisto "make" the first target encountered in the makefile. The
symbolic target "first_target" ensures that we have control over what file will be updated first
(inthis case "WINDOW.LIB"). Theuseof the ! i ncl ude preprocessing directive simplifies

Preprocessing Directives 121

The Make/Touch Utilities

the use of program generated makefile information because any changes are localized to the
file"MAKEFILE". As program development continues, the file "WMKMK.MIF" may be
regenerated so that subsequent invocations of WMAKE benefit from the new makefile
information. Thefile"MAKEFILE" even contains the command to regenerate the file
"WMKMK.MIF". The symbolic target "make" has an associated command list that will
regenerate the file "WMKMK.MIF". The command list can be executed by typing the
following command:

Example:
Cwrake nake

Theuseof the ! i ncl ude preprocessing directive is asimple way to reduce maintenance of
related makefiles.

Hint: Macrosare expanded on ! i ncl ude preprocessor control lines. This allows many
benefits like:

linclude $(%env_var)

so that the files that Make will process can be controlled through many different avenues
like internal macros, command line macros, and environment variables.

Another way to access files is through the suffix path feature of Make. A definition like
.mif : c:\mymifs; d:\some\more\mifs

will cause Make to search different paths for any make include files.

8.17.2 Conditional Processing

Watcom Make has conditional preprocessing directives available that allow different
declarations to be processed. The conditional preprocessing directives allow the makefile to

1. check whether amacro is defined, and
2. check whether amacro has a certain value.

The macros that can be checked include

1. normal macros"$(<macro_identifier>)"
2. environment macros "$(%<environment_var>)"

122 Preprocessing Directives

The Watcom Make Utility

The conditional preprocessing directives allow a makefile to adapt to different external
conditions based on the values of macros or environment variables. We can define macros on
the WMAKE command line as shown in the following example.

Example:
C>wnake "nmacro=sone text with spaces in it"

Alternatively, we can include a makefile that defines the macrosif all the macros cannot fit on
the command line. Thisis shown in the following example:

Example:
Cwrake /f macdef.mf /f makefile

Also, environment variables can be set before WMAKE isinvoked. Thisisshown inthe
following example:

Example:
C>set macro=sone text with spaces in it
Cwnake

Now that we know how to convey information to Make through either macros or environment
variables, we will look at how this information can be used to influence makefile processing.

Make has conditional preprocessing directives that are similar to the C preprocessor
directives. Make supports these preprocessor directives:

lifeq
l'ifneq
lifeqi
l'i f neqi
i fdef
l'i f ndef

along with

lel se
lendi f

Together these preprocessor directives allow selection of makefile declarations to be based on
either the value or the existence of a macro.

Environment variables can be checked by using an environment variable name prefixed with a

"%". A common use of a conditional preprocessing directive involves setting environment
variables.

Preprocessing Directives 123

The Make/Touch Utilities

#
setting an environnment variable
#
lifndef %ib
. BEFORE
set |ib=c:\watcom|ib386\dos
lendi f

If you are writing portable applications, you might want to have:

#

checking a nmacro

#

linclude version.mf

i fdef OS2

machine = /2 # compile for 286
lel se

machine = /0 # default: 8086
l'endif

The!i f def ("if defined") and !i f ndef ("if not defined") conditional preprocessing
directives are useful for checking boolean conditions. In other words, the ! i f def and

I'i f ndef areuseful for "yes-no" conditions. There are instances where it would be useful to
check amacro against avalue. In order to use the value checking preprocessor directives, we
must know the exact value of amacro. A macro definition is of the form:

<macro_identifier> = <text> <conmment >

Make will first strip any comment off the line. The macro definition will then be the text
following the equal "=" sign with leading and trailing blanks removed. Initially this might not
seem like a sensible way to define amacro but it does lend itself well to defining macros that
are common in makefiles. For instance, it allows definitions like:

#

sanpl e nacro definitions

#

i nk_options debug line # |ine nunber debugging

conpi | e_options /dl /nostack # |ine nunmbers, no stack checking

These definitions are both readable and useful. A makefile can handle differences between
compilerswiththe!ifeq, !ifneq, !ifeqi and!ifneqi conditiona preprocessing
directives. Thefirst two perform case sensitive comparisons while the last two perform case
insensitive comparisons. One way of setting up adaptive makefilesis:

124 Preprocessing Directives

The Watcom Make Utility

#

options made sinple

#

conpi |l er = wf c386

st ack_overfl ow
line_info

No # yes -> check for stack overfl ow
Yes # yes -> generate |line nunbers

lifeq conpiler wc386
lifneqi stack_overflow vyes

stack_option = / nost ack
l'endi f

lifeqi line_info yes
[ine_option = /dl
l'endi f

l'endi f

lifeq conpiler fl32
lifeqgi stack_overflow yes

stack_option = -CGe

lendi f

lifeqi line_info yes
[ine_option = - Zd

I endi f

l'endi f

#

make sure the nmacros are defined
#

l'i fndef stack_option
stack_option =

l'endi f

l'ifndef |ine_option
[ine_option =
lendi f

exanple : .SYMBOLIC
echo $(conmpiler) $(stack _option) $(line_option)

The conditional preprocessing directives can be very useful to hide differences, exploit
similarities, and organize declarations for applications that use many different programs.

Another directiveisthe ! def i ne directive. Thisdirectiveis equivalent to the normal type of
macro definition (i.e., macro = text) but will make C programmers feel more at home. One
important distinction isthat the ! def i ne preprocessor directive may be used to reflect the
logical structure of macro definitions in conditional processing. For instance, the previous
makefile could have been written in this style:

Preprocessing Directives 125

The Make/Touch Utilities

l'i fndef stack_option

I define stack_option
l'endi f

l'ifndef |ine_option

I define line_option
lendi f

The"!" character must bein the first column but the directive keyword can be indented. This
freedom appliesto al of the preprocessing directives. The ! el se preprocessing directive
benefits from this type of style because ! el se can aso check conditions like:

lelse ifeq
lel se ifneq
lelse ifeqi
lel se ifneqi
lel se ifdef

lel se ifndef

so that logical structures like:

l'i fdef %version

I ifeq %Wersion debuggi ng

! define option = debug all

I else ifeq %Wersion beta

! define option = debug line
I else ifeq %ersion production
! define option = debug

I else

! error invalid value in VERSI ON
I endif

l'endif

can be used. The above example checks the environment variable "VERSION" for three
possible values and acts accordingly.

Another derivative from the C language preprocessor isthe ! er r or directive which hasthe
form of

lerror <text>
in Make. Thisdirective will print out the text and terminate processing of the makefile. Itis

very useful in preventing errors from macros that are not defined properly. Hereisan
example of the ! er r or preprocessing directive.

126 Preprocessing Directives

The Watcom Make Utility

l'i fndef stack_option

I error stack_option is not defined
l'endi f

l'ifndef |ine_option

I' error line_option is not defined
l'endi f

There is one more directive that can be used in amakefile. The ! undef preprocessing
directive will clear amacro definition. The ! undef preprocessing directive has the form:

lundef <macro_identifier>

The macro identifier can represent a normal macro or an environment variable. A macro can
be cleared after it is no longer needed. Clearing a macro will reduce the memory
requirements for amakefile. If the macro identifier represents an environment variable (i.e.,
the identifier has a"%" prefix) then the environment variable will be deleted from the current
environment. The! undef preprocessing directive is useful for deleting environment
variables and reducing the amount of internal memory required during makefile processing.

8.17.3 Loading Dynamic Link Libraries

Watcom Make supports loading of Dynamic Link Library (DLL) versions of Watcom
software through the use of the ! | oaddl | preprocessing directive. This support is available
on Win32 and 32-bit OS/2 platforms. Performanceis greatly improved by avoiding areload
of the software for each file to be processed. The syntax of the ! | oaddl | preprocessing
directiveis:

'l oaddl | $(exenane) $(dll nane)
where $(exenane) isthe command name used in the makefileand $(dl | nane) isthe

name of the DLL to be loaded and executed in its place. For example, consider the following
makefile which contains alist of commands and their corresponding DLL versions.

Preprocessing Directives 127

The Make/Touch Utilities

Default conpilation nmacros for sanple prograns
#
Conpile switches that are enabl ed

CFLAGS = -d1

cC = wpp386 $(CFLAGS)
LFLAGS = DEBUG ALL

LINK = wink $(LFLAGS)

lifdef __LOADDLL_ _

I loaddl | wcc wced

I loaddll wccaxp wecdaxp
I loaddll wcc386 wccd386
I loaddll wpp wppdi 86
I loaddl |l wppaxp wppdaxp
I loaddll wpp386 wppd386
I loaddl | wink w i nk

I loaddll Wib w i bd
lendi f

.C.o0bj:
$(CO $*.c

The __LOADDLL __ symbol is defined for versions of Watcom Make that support the
I'l oaddl | preprocessing directive. The !i f def __LOADDLL__ construct ensures that
the makefile can be processed by an older version of Watcom Make.

Make will look up the wop386 command inits DLL load table and find a match. 1t will then
attempt to load the corresponding DLL (i.e., wppd386. dl |) and passit the command line
for processing. Thelookup is case insensitive but must match in all other respects. For
example, if apath isincluded with the command name then the same path must be specified in
the! | oaddl | preprocessing directive. This problem can be avoided through the use of
macros asillustrated below.

128 Preprocessing Directives

The Watcom Make Utility

Default conpilation nmacros for sanple prograns

#

Conpile switches that are enabled
#

cc286 = wpp

cc286d = wppdi 86

cc386 = wpp386

cc386d = wppd386

[inker = wink

[inkerd = wink

CFLAGS = -d1

CcC = $(cc386) $(CFLAGS)
LFLAGS = DEBUG ALL

LI NK = wink $(LFLAGS)
lifdef __LOADDLL__

'l oaddl | $(cc286) $(cc286d)
'l oaddl | $(cc386) $(cc386d)
'l oaddl | $(linker) $(linkerd)
l'endi f

.C.obj:

$(CO $*.c

A path and/or extension may be specified with the DLL name if desired.

8.18 Command List Directives

Watcom Make supports special directives that provide command lists for different purposes.
If acommand list cannot be found while updating a target then the directive . DEFAULT may
be used to provide one. A simple . DEFAULT command list which makes the target appear to
be updated is:

. DEFAULT
wt ouch $"@

The Watcom Touch utility sets the time-stamp on the file to the current time. The effect of
the above rule will be to "update" the file without altering its contents.

In some applications it is necessary to execute some commands before any other commands
are executed and likewise it is useful to be able to execute some commands after all other

Command List Directives 129

The Make/Touch Utilities

commands are executed. Make supports this capability by checking to seeif the . BEFORE
and . AFTER directives have been used. If the . BEFORE directive has been used, the

. BEFORE command list is executed before any commands are executed. Similarly the

. AFTER command list is executed after processing isfinished. Itisimportant to note that if
all the files are up to date and no commands must be executed, the . BEFORE and . AFTER
command lists are never executed. |f some commands are executed to update targets and
errors are detected (non-zero return status, macro expansion errors), the . AFTER command
list is not executed (the . ERROR directive supplies acommand list for error conditionsand is
discussed in this section). These two directives may be used for maintenance asillustrated in
the following example:

#
. BEFORE and . AFTER exanpl e
#
. BEFORE
echo . BEFORE command |ist executed
. AFTER
echo . AFTER command |i st executed
#
rest of makefile foll ows
#

If al the targets in the makefile are up to date then neither the . BEFORE nor the . AFTER
command lists will be executed. If any of the targets are not up to date then before any
commands to update the target are executed, the . BEFORE command list will be executed.
The . AFTER command list will be executed only if there were no errors detected during the
updating of thetargets. The . BEFORE, . DEFAULT, and . AFTER command list directives
provide the capability to execute commands before, during, and after the makefile processing.

Make also supports the . ERROR directive. The . ERROR directive supplies a command list to
be executed if an error occurs during the updating of a target.

#
. ERROR exampl e
#
. ERROR
beep
#
rest of makefile foll ows
#

130 Command List Directives

The Watcom Make Utility

The above makefile will audibly signal you that an error has occurred during the makefile
processing. If any errors occur during the . ERROR command list execution, makefile
processing is terminated.

8.19 MAKEINIT File

As you become proficient at using Watcom Make, you will probably want to isolate common
makefile declarations so that there is less duplication among different makefiles. Make will
search for afile called "MAKEINIT" and process it before any other makefiles. The search
for the "MAKEINIT" filewill occur along the current "PATH". If thefile"MAKEINIT" is
not found, processing continues without any errors. The only default declaration that Make
providesis equivalent to a"MAKEINIT" file containing:

__MAKEOPTS__ = <options passed to WWAKE>
__MAKEFI LES__ = <list of nakefil es>
__MSDOS__ =

clear . EXTENSIONS |i st

. EXTENSI ONS:

set . EXTENSIONS |i st
.EXTENSIONS: .exe .exp .lib .obj .asm.c .for .pas .cob .h .fi .mf

For OS2, the - MSDOS_— macro will bereplacedby OS2 and for Windows NT, the

__BDOS__ macro will bereplacedby __NT__. Theuseof a"MAKEINIT" file will allow
you to reuse common declarations and will result in simpler, more maintainable makefiles.

8.20 Command List Execution

Watcom Make is a program which must execute other programs and operating system shell
commands. There are three basic types of executable filesin DOS.

1. . COMfiles
2. . EXEfiles
3. . BATfiles

There are two basic types of executable filesin Windows NT.

1. . EXEfiles
2. . BAT files

There are two basic types of executable filesin OS/2.

1. . EXEfiles

Command List Execution 131

The Make/Touch Utilities

2. . CMDfiles

The. COMand . EXE files may be loaded into memory and executed. The . BAT files must be
executed by the DOS command processor or shell, "COMMAND.COM". The . CMDfiles
must be executed by the OS/2 command processor or shell, "CMD.EXE" Make will search
along the "PATH" for the command and depending on the file extension the file will be
executed in the proper manner.

If Make detects any input or output redirection characters (these are">", "<", and "[") in the
command, it will be executed by the shell.

Under DOS, an asterisk prefix (*) will cause Make to examine the length of the command
argument. If itistoolong (> 126 characters), it will take the command argument and stuff it
into atemporary environment variable and then execute the command with " @env_var" asits
argument. Suppose the following sample makefile fragment contained a very long command

line argument.
#
Asterisk example
#
*foo nmyfile fa /b /c ... Ix Iy lz

Make will perform something logically similar to the following steps.

set TEMPVAROOl=nyfile /fa /b /c ... Ix ly /z
foo @EMPVAROO1

The command must, of course, support the "@env_var" syntax. Typically, DOS commands
do not support this syntax but many of the Watcom tools do.

The exclamation mark prefix (1) will force acommand to be executed by the shell. Also, the
command will be executed by the shell if the command is an internal shell command from the

following list:

break (check for Ctrl+Break)

call (nest batch files)

chdir (change current directory)

cd (change current directory)

cls (clear the screen)

cmd (start NT or OS/2 command processor)
command (start DOS command processor)

copy (copy or combine files)

132 Command List Execution

The Watcom Make Utility

ctty
d:

date
del

dir
echo
erase
for

if

md
mkdir
path
pause
prompt
ren
rename
rmdir
rd

Set
time
type
ver
verify
vol

(DOS redirect input/output to COM port)

(change drive where "d" represents a drive specifier)
(set system date)

(erasefiles)

(display contentsin adirectory)

(display commands as they are processed)
(erasefiles)

(repetitively process commands, intercepted by WMAKE)
(allow conditional processing of commands)

(make directory)

(make directory)

(set search path)

(suspend batch operations)

(change command prompt)

(renamefiles)

(renamefiles)

(remove directory)

(remove directory)

(set environment variables, intercepted by WMAKE)
(set system time)

(display contents of afile)

(display the operating system version number)

(set data verification)

(display disk volume label)

The operating system shell "SET" command is intercepted by Make. The"SET" command
may be used to set environment variables to values required during makefile processing. The
environment variable changes are only valid during makefile processing and do not affect the
values that were in effect before Make was invoked. The"SET" command may be used to
initialize environment variables necessary for the makefile commands to execute properly.
The setting of environment variables in makefiles reduces the number of "SET" commands
required in the system initialization file. Hereisan example with the Watcom F77 compiler.

#

SET exanpl e

#

. BEFORE
set finclude=c:\special\inc;$(% include)
set |ib=c:\watcomlib386\dos

#

rest of mmkefile foll ows

#

Command List Execution 133

The Make/Touch Utilities

Thefirst "SET" command will set up the FINCL UDE environment variable so that the
Watcom F77 compiler may find header files. Notice that the old value of the FINCL UDE
environment variableis used in setting the new value.

The second "SET" command indicates to the Watcom Linker that libraries may be found in
theindicated directories.

Environment variables may be used also as dynamic variables that may communicate
information between different parts of the makefile. An example of communication within a
makefileisillustrated in the following example.

#

internal nmakefile communi cation
#

. BEFORE

set message=nessage text 1
echo *$(%ressage)*

set nmessage=

echo *$(%ressage) *

.exanpl e : another_target .SYMBOLIC
echo *$(%ressage) *

anot her _target : .SYMBOLIC
set nessage=nessage text 2

The output of the previous makefile would be:

(command out put only)

message text 1
* *

message text 2

Make handles the "SET" command so that it appears to work in an intuitive manner similar to
the operating system shell’s"SET" command. The "SET" command also may be used to
allow commands to relay information to commands that are executed afterwards.

The DOS "FOR" command is intercepted by Make. The reason for thisisthat DOS has a
fixed limit for the size of a command thus making it unusable for large makefile applications.
One such application that can be done easily with Make is the construction of a WLINK
command file from amakefile. The idea behind the next example isto have onefile that
containsthe list of object files. Anytimethisfile is changed, say, after a new module has been
added, a new linker command file will be generated which in turn, will cause the linker to
relink the executable. First we need the makefile to define the list of object files, thisfileis

134 Command List Execution

The Watcom Make Utility

"OBJDEF.MIF" and it declares amacro "objs’ which has asits value the list of object filesin
the application. The content of the "OBJDEF.MIF" fileis:

#
list of object files
#
objs = &
wi ndow. obj &
bi 0s. obj &
keyboard. obj &
nouse. obj

The main makefile "MAKEFILE") is:

#

FOR conmand exanpl e
#

l'include objdef.mf

pl ot.exe : $(objs) plot.Ink
w i nk @l ot

plot.lnk : objdef.mf
echo NAME $"& >$"@
echo DEBUG al |l >>$"@
for % in ($(objs)) do echo FILE % >>$"@

This makefile would produce afile "PLOT.LNK" automatically whenever the list of object
filesis changed (anytime "OBJDEF.MIF" is changed). For the above example, the file
"PLOT.LNK" would contain:

NAME pl ot

DEBUG al |

FI LE wi ndow. obj
FI LE bi os. obj

FI LE keyboar d. obj
FI LE nouse. obj

Make supports eight internal commands:

%nul |
%st op
Ygui t
%abor t
%¢reate
o%write

ouhkwbdpE

Command List Execution 135

The Make/Touch Utilities

7. Yappend
8. %rake

The%nul | internal command does absolutely nothing. It isuseful because Make demands
that a command list be present whenever atarget is updated.

#

9%ul | exanpl e

#

all : applicationl application2 .SYMBCOLIC

o%ul |

applicationl : appll.exe .SYMBCLIC
%ul |

application2 : appl 2. exe . SYMBCLI C
%ul |

appl 1. exe : (dependents ...)
(commands)

appl 2. exe : (dependents ...)
(conmmands)

Through the use of the %ul | internal command, multiple application makefiles may be
produced that are quite readable and maintainable. The %st op internal command will
temporarily suspend makefile processing and print out a message asking whether the Makefile
processing should continue. Make will wait for either the "y" key (indicating that the
Makefile processing should continue) or the "n" key. If the"n" key is pressed, makefile
processing will stop. The %st op internal command is very useful for debugging makefiles
but it may be used also to develop interactive makefiles. The Ygui t internal command will
terminate execution of Make and return to the operating system shell with an exit code of
zero. The%abort interna commandisidentical to %gui t except that a non-zero exit code
isreturned by WMAKE.

The%reate, %wite, and ¥%append interna commands allow WMAKE to generate
files under makefile control. Thisisuseful for files that have contents that depend on
makefile contents. Through the use of macros and the "for" command, Make becomes avery
powerful tool in maintaining lists of filesfor other programs. The %r eat e internal
command will create or truncate afile so that the file does not contain any text. The

%r eat e internal command has the form:

%reate <fil e>

136 Command List Execution

The Watcom Make Utility

where <f i | e>isafile specification. The %w i t e internal command will create or truncate
afile and write oneline of text into it. The %append internal command will append a text
line to the end of afile (which will be created if it does not exist). The %wri t e and
Y%append internal commands have the same form, namely:

%wite <file> <text>
Y%append <file> <text>

where <f i | e>isafile specification and <t ext > isarbitrary text. Full macro processingis
performed on these internal commands so the full power of WMAKE can be used. The
following example illustrates a common use of these internal commands.

#

%reate %append exanpl e
#
l'include objdef.mf

pl ot.exe : $(objs) plot.Ink
w i nk @l ot

plot.lnk : objdef.mf
Yereate $"'@
Yappend $"@ NAME $"&
Yappend $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

The above code demonstrates a valuable technique that can generate directive files for
WLINK, WLIB, and other utilities.

The %rake internal command permits the updating of a specific target. The %rake interna
command has the form:

%ake <target>

where <t ar get > isatarget in the makefile.

Command List Execution 137

The Make/Touch Utilities

#

%ake exanpl e

#

l'include objdef.mf

pl ot.exe : $(objs)
%rake plot. | nk
W ink @l ot

plot.Ink : objdef.mf
Y%reate $"@
Yappend $"@ NAME $"&
Y%append $"@ DEBUG al |
for % in ($(objs)) do %ppend $"@FI LE %

8.21 Compatibility Between Watcom Make and UNIX

Make

Watcom Make was originally based on the UNIX Make utility. The PC’s operating
environment presents a base of users which may or may not be familiar with the UNIX
operating system. Make is designed to be a PC product with some UNIX compatibility. The
line continuation in UNIX Makeis abackslash ("\") at the end of the line. The backdash ("\")
is used by the operating system for directory specifications and as such will be confused with
line continuation. For example, you could type:

cd \

along with other commands ... and get unexpected results. However, if your makefile does
not contain path separator characters ("\") and you wish to use "\" as aline continuation
indicator then you can use the Make "u" (UNIX compatibility mode) option.

Also, in the UNIX operating system there is no concept of file extensions, only the concept of
afile suffix. Make will accept the UNIX Make directive . SUFFI XES for compatibility with
UNIX makefiles. The UNIX compatible special macros supported are:

Macro Expansion

$@ full name of the target

$* target with the extension removed
$< list of al dependents

138 Compatibility Between Watcom Make and UNIX Make

The Watcom Make Utility

$? list of dependents that are younger than the target

The extra checking of makefiles done by Make will require modificationsto UNIX makefiles.
The UNIX Make utility does not check for the existence of targets after the associated
command list is executed so the "c" or the . NOCHECK directive should be used to disable this
checking. The lack of acommand list to update atarget isignored by the UNIX Make utility
but Watcom Make requires the special internal command %nul | to specify anull command

list. In summary, Make supports many of the features of the UNIX Make utility but is not
100% compatible.

8.22 Watcom Make Diagnostic Messages

This section lists the various warning and error messages that may be issued by the Watcom
Make. Inthe messages below, %? character sequencesindicate places in the message that are
replaced with some other string.

1 Out of memory

2 Make execution terminated

3 Option %c%c invalid

4 %c%c must be followed by a filename

5 No targets specified

6 Ignoring first target in MAKEINIT

7 Expecting a %M

8 Invalid macro name %E

9 Ignoring out of place %M

10 Macros nested too deep

11 Unknown internal command

12 Program nameistoo long

13 No control characters allowed in options

Watcom Make Diagnostic Messages 139

The Make/Touch Utilities

14 Cannot execute %E: %Z

15 Syntax error in %s command

16 Nested %s loops not allowed

17 Token too long, maximum size is %d chars
18 Unrecognized or out of place character '%C’
19 Target %E already declared %M

20 Command list does not belong to any target
21 Extension(s) %E not defined

22 No existing file matches %E

23 Extensionsreversed in implicit rule

24 More than one command list found for %E
25 Extension %E declared more than once

26 Unknown preprocessor directive: %s

27 Macro %E isundefined

28 !If statements nested too deep

29 1%s has no matching !if

30 Skipping %1 block after ! %2

31 %1 not allowed after %2

32 Opening file %E: %Z

34 1%s pending at end of file

35 Trying to !%s an undefined macro

36 Illegal attempt to update special target %E

140 Watcom Make Diagnostic Messages

The Watcom Make Utility

37 Target %E is defined recursively

38 %E does not exist and cannot be made from existing files
39 Target %E not mentioned in any makefile

40 Could not touch %E

41 No %s commands for making %E

42 Last command making (%L) returned a bad status
43 Deleting %E: %Z

44 %s command returned a bad status

45 Maximum string length exceeded

46 |llegal character value %xH in file

47 Assuming target(s) are .%s

48 Maximum %%make depth exceeded

49 Opening (%s) for write: %Z

50 Unable to write: %Z

51 CD’ing to %E: %Z

52 Changing to drive %C:

53 DOS memory inconsistency detected! System may halt ...
53 OS corruption detected

54 While reading (%s): %Z

59!1F ParseError

60 TMP Path/File Too Long

61 Unexpected End of File

Watcom Make Diagnostic Messages 141

The Make/Touch Utilities

62 Only NO(KEEP) allowed here

63 Non-matching "

64 Invalid String Macro Substitution

65 File Name Length Exceeded

66 Redefinition of .DEFAULT Command List
67 Non-matching { In Implicit Rule

68 Invalid I mplicit Rule Definition

69 Path Too Long

70 Cannot Load/Unload DLL %E

71 Initialization of DLL %E returned a bad status
72 DLL %E returned a bad status

73 Illegal Character %C in macro name
74in closing file %E

75 in opening file %E

76 in writing file %E

77 User Break Encountered

78 Error in Memory Tracking Encountered

79 Makefile may be Microsoft try /ms switch

142 Watcom Make Diagnostic Messages

9O The Touch Utility

9.1 Introduction

This chapter describes the Watcom Touch utility. Watcom Touch will set the time-stamp (i.e.,
the modification date and time) of one or more files. The new modification date and time may
be the current date and time, the modification date and time of ancther file, or a date and time
specified on the command line. This utility is normally used in conjunction with the Watcom
Make utility. Therationale for bringing a file up-to-date without altering its contentsis best
understood by reading the chapter which describes the Make utility.

The Watcom Touch command line syntax is:

WTOUCH [optiong] file_spec [file_spec...]

The square brackets [] denote items which are optional.

options

file_spec

isalist of valid options, each preceded by adash (/") or adash ("-"). Options
may be specified in any order.

isthe file specification for the file to be touched. Any number of file
specifications may be listed. The wild card characters"*" and "?' may be used.

Thefollowing is a description of the options available.

c
d <date>
f <file>

do not create an empty fileif the specified file does not exist
specify the date for the file time-stamp in "mm-dd-yy" format
use the time-stamp from the specified file

increment time-stamp before touching the file

suppress informational messages

touch file even if it is marked read-only

specify the time for the file time-stamp in "hh:mm:ss" format
use USA date/time format regardless of country

display help screen

Introduction 143

The Make/Touch Utilities

9.2 WTOUCH Operation

WTOUCH isused to set the time-stamp (i.e., the modification date and time) of afile. The
contents of thefile are not affected by this operation. If the specified file does not exigt, it will
be created as an empty file. This behaviour may be altered with the "c" option so that if the
fileis not present, a new empty file will not be created.

Example:
(will not create nyfile.dat)
Cwt ouch /c nyfile. dat

If awild card file specification is used and no files match the pattern, no files will have their
time-stamps altered. The date and time that all the specified files are set to is determined as
follows:

1. Thecurrent date and timeis used as a default value.

2. Atime-stamp from an "agefil€" may replace the current date and time. The "f"
option is used to specify the file that will supply the time-stamp.

Example:
(use the date and tine fromfile "last.tini)
Cwouch /f last.timfile*. dat

3. Thedate and/or time may be specified from the command line to override a part of
the time-stamp that will be used. The"d" and "t" options are used to override the
date and time respectively.

Example:
(use current date but use different tine)
Cwtouch /t 2:00p file*. dat
(compl etely specify date and tine)
Cw ouch /d 10-31-90 /t 8:00:00 file*.dat
(use date fromfile "last.tinl but set tine)
Cwtouch /f last.tim/t 12:00 fil e*. dat

The format of the date and time on the command line depends on the country
information provided by the host operating system. Watcom Touch should accept
dates and timesin asimilar format to any operating system utilities (i.e., the DATE
and TIME utilities provided by DOS). The"a"' and "p" suffix is an extension to the
time syntax for specifying whether thetimeis A.M. or P.M., but thisis only
available if the operating system is not configured for military or 24-hour time.

144 WTOUCH Operation

Index

i

186 17
.286 17
.286¢c 17
.286p 17
.287 17
.386 17
.386p 17
.387 17
486 17
A486p 17
.586 17
.586p 17
.8086 17
.8087 17
.apha 17,21
Jreak 17,21
.code 17
.const 17
.continue 17, 21
.cref 17,21
data 17
data? 17
.dosseg 17
.endw 17,21
.er 17

.erb 17
.errdef 17
errdif 17
errdifi 17
.erre 17
.erridn 17
.erridni 17
.errnb 17
.errndef 17
ez 17
exit 17,21
fardata 17
fardata? 17

fcond 17, 21
Jist 17,21
Jistal 17,21
Jigtif 17, 21
Jistmacro 17, 21
Jistmacroall 17, 21
.model 17
.nocref 17,21
.nolist 17,21
radix 17,21
repeat 17,21
sl 17,21
seq 17,21
.sfcond 17, 21
Stack 17
Startup 17, 21
tfcond 17, 21
.until 17, 21
while 17, 21
xeref 17,21
Xlist 17,21

addr 21
AFTER
WMAKE directive 129
assembler 15
AUTODEPEND
WMAKE directive 90
AUTOEXEC.BAT
systemiinitialization file 10

batch files 120

145

Index

BEFORE

WMAKE directive 129
Bell Laboratories 86
BLOCK

WMAKE directive 77
BPATCH

command line format 65

diagnostics 66
bugs 65

casemap 21
catstr 21
checking macro values 124
CMD.EXE shdll 132
colon (3)

behaviour in WMAKE 89

explicit rulein WMAKE 86
command execution 131
command line format

BPATCH 65

WASM 15

WDIS 49

WFL 3

WFL386 3

WLIB 33

WMAKE 75

WSTRIP 70

WTOUCH 143
COMMAND.COM shell 132
common information 118
communication 134
CONFIG.SYS

systeminitialization file 10
CONTINUE

WMAKE directive 78

146

debug information

remova 69
debugging makefiles 77, 136
declarations 85
DEFAULT

WMAKE directive 129
default options 8
dependency 85
dependent 86
dependent extension 107
diagnostics

BPATCH 66

WSTRIP 71

different memory model libraries 118

disassembler 49
disassembly example 55
DLL support 127
DOS Extender
Phar Lap 286 12
DOSCALLSLIB 12
double colon explicit rule 117
double-colon (::)
explicit rulein WMAKE 117
duplicated information 118
Dynamic Link Library
imports 38-39, 41
dynamic variables 134

echo 21
WMAKE 130

endmacro 21

environment string
#9

Index

= substitute 9
environment variables 100, 122-123, 133

FINCLUDE 133-134

LIB 12,123, 133

LIBOS2 12

PATH 66, 100

WFL 9-10

WFL386 9-10
ERASE

WMAKE directive 78, 95
ERROR

WMAKE directive 130
executable files

reducing size 69
explicit rule 86, 117
EXTENSIONS

WMAKE directive 107

far call optimization

enabling 60
far call optimizations 59
far jump optimization 60
FCENABLE options

b 61

c 61

s 61

X 61
Feldman, S.I 86
FINCLUDE environment variable 134
finding targets 111
FOR

using Watcom Make 134

global recompile 77,121
GRAPH.LIB 12
GRAPHP.OBJ 12

high 21
highword 21
HOLD
WMAKE directive 83, 95

!

IGNORE

WMAKE directive 78, 94
ignoring return codes 94
implicit rule 106
implicit rules

$[form 108

$] form 108

$" form 108
import library 38-39, 41
initialization file 131
invoke 21
invoking Watcom Make 85, 120, 122
invoking Watcom Touch 143

147

Index

MAKEFILE comments 85
MAKEINIT 131

L mask 21

memory model 118
message passing 134
Microsoft compatibility

large projects 118

larger applications 112 N.N.IAK.E ”
LBC command file 39 mod|_f|cat|on 143
LIB environment variable 12 mult! pledependepts 87.
LIBOS2 environment variable 12 multiple source directories 112
libraries 118 multiple targets 87
library
import 41
library file
addingtoa 35 N
deleting froma 36

extracting froma 37

replacing amoduleina 37 NMAKE 77, 79
library manager 33 NOCHECK
line continuation 100 WMAKE directive 77, 89, 139
__LOADDLL__ 128
low 21
lowword 21
Iroffset 21 0]

M opattr 21

OPTIMIZE
WMAKE directive 79, 114
) option 21
macro con_st_rL_Jctlon 101 options
macro definition 124 04
macro identifier 122 14
macro text 124 24
macros 97, 124 34
maintaining libraries 118 4 4
maintenance 75 5 4
make 6 4

includefile 119 dign 4

reference 75 automatic 4

Touch 143 bd 4

WMAKE 75 bm 4

MAKEFILE 78, 85

148

Index

bounds 4
bw 4

cc 4
chinese 4
code 4

di 4

d2 4
debug 4
define 4
dependency 4
descriptor 4
disk 4

dt 4
errorfile 4
explicit 4
extensions 5
ez 5

fo 5
format 5
fp2 5

fp3 5

fp5 5

fp6 5

fpc 5

fpd 5

fpi 5
fpi87 5
fpr 5
fsfloats 5
gsfloats 5
hc 5

hd 5

hw 5
inclist 5
incpath 5
ipromote 5
japanese 5
korean 5
Ifwithff 5
libinfo 5
list 5
mangle 5
mc 5

mf 5

mh 5

ml 5

mm 5

ms 5

ob 5

obp 5

oc 5

od 5

odo 5

of 5

oh 5

oi 5

ok 5

ol 6

o+ 6

om 6

on 6

op 6

or 6

0os 6

ot 6

oX 6

print 6
quiet 6
reference 6
resource 6
save 6

sc 6
sepcomma 6
sg 6
short 6

s 6
ssfloats 6
stack 6
syntax 6
terminal 6
trace 6
type 6
warnings 6
wild 6
windows 6
xfloat 6
xline 6

052 12

149

Index

DOSCALLS.LIB 12

page 21
patches 65

path 111
PATH environment variable 66, 100
pause
WMAKE 130
PHAPI.LIB 12
Phar Lap
286 DOS Extender 12
popcontext 21
PRECIOUS
WMAKE directive 93, 95
preprocessing directives
WMAKE 118
program maintenance 75
proto 21
purge 21
pushcontext 21

recompile 77,117, 121

record 21

reducing maintenance 122
removing debug information 69
replace 119

return codes 93, 95

rule command list 86

150

SET
FINCLUDE environment variable 133
LIB environment variable 12, 133
LIBOS2 environment variable 12
using Watcom Make 133-134
WEFL environment variable 9, 11-12

WFL 386 environment variable 9, 11-12

Setting
modification date 143
modification time 143
setting environment variables 123, 133
shell
CMD.EXE 132
COMMAND.COM 132
SILENT
WMAKE directive 96
single colon explicit rule 86
strip utility 69
subtitle 21
subttl 21
SUFFIXES
WMAKE directive 138
suppressing output 96
SYMBOLIC
WMAKE directive 91, 100-102, 136
systeminitialization file 133
AUTOEXEC.BAT 10
CONFIG.SYS 10

target 86

target deletion prompt 78, 83
this 21

time-stamp 75, 143

Index

title 21

Touch 77, 83, 129, 143
touch utility 143
typedef 21

union 21
UNIX 86, 138
UNIX compatibility modein Make 83

W

WASM
command line format 15
Watcom Far Call Optimization Enabling Utility
60
Watcom Make
WMAKE 75
WDIS
command line format 49
WDIS example 55
WDIS options 50
a 50
e 51
fi 52
fp 51
fr 52
fu 52
i 50
| (lowercaseL) 52
m 54
p 53
sS4
WFL 9-12
command lineformat 3

WFL environment variable 9-10, 12
WFL options
"<linker directives>" 8
Cc4
FD[=<directive file>] 6
FE=<executable> 6
Fl=<fn> 6
FM[=<map_file>] 6
K=<stack size> 6
L=<system_name> 7
Ip 6,12
LR 6
Y 4
WFL386 9-12
command lineformat 3
WFL 386 environment variable 9-10, 12
WFL 386 options
"<linker directives>" 8
c4
FD[=<directive file>] 6
FE=<executable> 6
Fl=<fn> 6
FM[=<map_file>] 6
K=<stack size> 6
L=<system_name> 7
Ip 12
Y 4
width 21
WLIB
command file 39
command line format 33
operations 35
WLIB options 40
b 40
c 40
d 40
f 41
i 41
| (lower case L) 42
m 43
n 43
0 43
p 44
q 44

151

Index

s 44 maintaining libraries 118
t 45 MAKEFILE 78, 85
v 45 MAKEFILE comments 85
x 45 MAKEINIT 131

WLINK debug options 102 memory model 118

WMAKE multiple dependents 87
I command execution 132 multiple source directories 112
":" behaviour 89 multiple targets 87
":" explicit rule 86 path 111
"::" explicit rule 117 preprocessing directives 118
* command execution 132 recompile 117
<redirection 132 reducing maintenance 122
> redirection 132 reference 75
batch files 120 return codes 93, 95
Bell Laboratories 86 rule command list 86
checking macro values 124 setting environment variables 123, 133
command execution 131 single colon explicit rule 86
common information 118 special macros 84
debugging makefiles 77, 136 suppressing output 96
declarations 85 target 86
dependency 85 target deletion prompt 78, 83
dependent 86 time-stamp 75
dependent extension 107 touch 77, 83, 129
different memory model libraries 118 UNIX 86, 138
double colon explicit rule 117 UNIX compatibility mode 83
duplicated information 118 WTOUCH 129
dynamic variables 134 | redirection 132
environment variables 100, 122-123, 133 WMAKE command line
explicit rule 86, 117 defining macros 76, 123
Feldman, S.I 86 format 75
finding targets 111 help 76
ignoring return codes 94 invoking WMAKE 75, 85, 120, 122
implicit rule 106 options 76
include file 119 summary 76
initialization file 131 targets 76, 122
large projects 118 WMAKE command prefix
larger applications 112 -9
libraries 118 @ 96
line continuation 100 WMAKE directives
macro construction 101 AFTER 129
macro definition 124 AUTODEPEND 90
macro identifier 97, 122 .BEFORE 129
macro text 124 .BLOCK 77
macros 97, 124 .CONTINUE 78

152

Index

.DEFAULT 129 ldefine 125

.ERASE 78, 95 lelse 123

.ERROR 130 lendif 123

.EXTENSIONS 107 lerror 126

.HOLD 83,95 lifdef 123

IGNORE 78, 94 lifeq 123

.NOCHECK 77, 89, 139 lifeqi 123

.OPTIMIZE 79, 114 lifndef 123

.PRECIOUS 93, 95 lifneq 123

SILENT 96 lifnegi 123

SUFFIXES 138 linclude 118

SYMBOLIC 91, 100-102, 136 HNoaddll 127
WMAKE internal commands lundef 127

%abort 135-136 DLL support 127

%append 136-137 __LOADDLL__ 128

%create 135, 137 WMAKE special macros

%make 136 $# 84, 106

%null 135-136, 139 $$ 84, 106

%quit 135-136 $(%e<environment_var>) 100, 122

%stop 135-136 $(%cdrive) 100

%write 135 $(%cwd) 100
WMAKE options $(%path) 100, 133

a 77,117,121 $* 84,138

b 77 $+ 100-101

c77 $- 100-101

d 77 $< 84,138

e 78 $? 84,138

f 78, 85, 123 $@ 84,138

h 78 $ 85,104

i 78,94 $[form 85, 104, 108

k 78 $[& 85,104

| 79 $[* 85,104

m 79 $[: 85,104

ms 79 @ 85, 104

n 79 $] 85,104

079 $] form 85, 104, 108

p 80 $]& 85,104

g 80 $]* 85,104

r 80 $]: 85,104

s 83,96 $|@ 85, 104

t 83 $" 85,104

u 83 $" form 84, 104, 108

z 83 $& 84,104
WMAKE preprocessing $* 84, 104

153

Index

$": 85,104
$@ 84,104
WSTRIP 69
command line format 70
diagnostics 71
WTOUCH 77, 83, 129
command line format 143
WTOUCH options 144

154

