Watcom Linker

User’s Guide

Edition 11.0c

Notice of Copyright

Copyright 00 2000 Sybase, Inc. and itssubsidiaries. All rights reserved.

No part of this publication may be reproduced, transmitted, or translated in any form or by
any means, electronic, mechanical, manual, optical, or otherwise, without the prior written
permission of Sybase, Inc. and its subsidiaries.

Printed in U.S.A.

Preface

The Watcom Linker User’s Guide describes how to use the Watcom Linker under DOS, OS/2,
Windows 95, Windows NT and QNX. The Watcom Linker can generate executable files that
run under DOS, FlashTek’s DOS extender, Phar Lap’s 386|DOS-Extender and TNT DOS
extender, Tenberry Software’'s DOS/4G, Microsoft Windows 3.x, Microsoft Windows NT,
Microsoft Windows 95, IBM OS/2, QNX, and Novell's NetWare 386 operating system. The
Watcom Linker can also generate ELF format executable files for those systems that will
support ELF. The Microsoft Response File conversion utility, MS2WLINK, is aso described
in this book.

Acknowledgements

This book was produced with the Watcom GML electronic publishing system, a software tool
developed by WATCOM. In this system, writers use an ASCI| text editor to create source
files containing text annotated with tags. These tags label the structural elements of the
document, such as chapters, sections, paragraphs, and lists. The Watcom GML software,
which runs on avariety of operating systems, interprets the tags to format the text into aform
such asyou see here. Writers can produce output for avariety of printers, including laser
printers, using separately specified layout directives for such things as font selection, column
width and height, number of columns, etc. The result istype-set quality copy containing
integrated text and graphics.

September, 2000.

Trademarks Used in this Manual
DOSY/4G is atrademark of Tenberry Software, Inc.
0S/2 and Presentation Manager are trademarks of International Business Machines Corp.
IBM, IBM PC and IBM PS/2 are registered trademarks of International Business Machines
Corp.
Intel isaregistered trademark of Intel Corp.

Microsoft, Windows and Windows 95 are registered trademarks of Microsoft Corp. Windows
NT isatrademark of Microsoft Corp.

NetWare, NetWare 386, and Novell are registered trademarks of Novell, Inc.
Phar Lap, 386|DOS-Extender and TNT are trademarks of Phar Lap Software, Inc.
QNX isaregistered trademark of QNX Software Systems Ltd.

WATCOM isatrademark of Sybase, Inc. and its subsidiaries.

Table of Contents

THEWATCOM LINKET ..ottt sttt sttt s s st e s st e sabe s saessbessbessbessaessabessanesaressens
1 ThEWEECOM LINKETeeiiieeeee ettt s e st e s sbe e s s ba e s seate s s saaeessbenesans

2 Linking Executable Filesfor Various SYStems ...
2.1Using the SY STEM DIreCliVEccooeireirieeriereesiee e
2.2 Linking 16-bit x86 Executable FileSccccvvvvivivivere e

2.2.1 Linking 16-bit x86 DOS Executable Filesccccvvvvvvevieveceenenne,
2.2.2 Linking 16-bit x86 DOS .COM Executable Filescccevennnee
2.2.3 Linking 16-bit x86 OS/2 Executable Filesccccccvvveveveeciieene
2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Librariescccccoceue...
2.2.5 Linking 16-bit x86 QNX Executable Filesc.ccoooviiiiiiiienenne.
2.2.6 Linking 16-bit x86 Windows 3.x Executable Filescccocuee..
2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries
2.3 Linking 32-bit x86 Executable FileS ..o
2.3.1 Linking 32-bit x86 AutoCAD Development System Executable

FHIES e

2.3.2 Linking 32-bit x86 AutoCAD Device Interface Executable
FHIES e
2.3.3 Linking 32-bit x86 DOS/AGW Executable Filescccevecevennen.
2.3.4 Linking 32-bit x86 FlashTek Executable Filescccocrinenene
2.3.5 Linking 32-bit x86 Novell NetWare Loadable Modules
2.3.6 Linking 32-bit x86 OS/2 Executable Filescccoceveneincincenee
2.3.7 Linking 32-bit x86 OS/2 Dynamic Link Librariesccccoevuene.

2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable
T =
2.3.9 Linking 32-bit x86 Phar Lap Executable Files.........cccccccoevirvernnens
2.3.10 Linking 32-bit x86 Phar Lap TNT Executable Files
2.3.11 Linking 32-hit x86 QNX Executable Filesccccocevvvivvvirennne.
2.3.12 Linking 32-bit x86 Extended Windows 3.x Executable

2.3.13 Linking 32-bit x86 Extended Windows 3.x Dynamic Link
LIDPaIES oottt et
2.3.14 Linking 32-bit x86 Windows 95 Executable Filesc........
2.3.15 Linking 32-bit x86 Windows 95 Dynamic Link Libraries

2.3.16 Linking 32-bit x86 Windows NT Character-M ode Executable

T (=S
2.3.17 Linking 32-bit x86 Windows NT Windowed Executable Files ...
2.3.18 Linking 32-bit x86 Windows NT Dynamic Link Libraries

3 Linker Directives and OPLiONScccoererierieiiereeeeesene s e
3. L ThE ALIASDIFECHIVEceeiiriciiiresieie ettt
3.2 The ALIGNMENT OPLON ...ccoviiiiiciiiririeetrerieiee et

w

© © © 00 00 Ul ul

Table of Contents

3.3 The ANONY MOUSEXPORT DIr€ClIVEcccorueereriririeieenirieieesesesieienesenias
3.4 The ARTIFICIAL OPtON ...cocuiiiiriciieririeiee sttt
3.5 The CACHE OPLIONocviiiiiiiiereete ettt
3.6 The CASEEXACT OPLON ...coivieireeiirieiirieerieesieesiese e
3.7 The CHECK OPLIONccoriiuirieiereeieseeie sttt seebe b

3.8 The# Directive

3.9 The COMMIT DIrECHVEcocviiereerceirereererene s

3.10 The COPY RIGHT OPLiONccveieeeeirise et stesie e ee e

3.11 The CUSTOM OPLION ..c.ecviieerieieiiesiesiese st stesie e seeeeses e eseesessessesrestesnesreees

3.12 The CVPACK OPLION ..ottt

3.13 The DEBUG DIl€CLIVEcccvieieieeriietisieteseeeseeieseeesnee i

3.13.1 Line Numbering Information - DEBUG WATCOM LINES

3.13.2 Local Symbol Information - DEBUG WATCOM LOCALS

3.13.3 Typing Information - DEBUG WATCOM TYPESccccoenene.

3.13.4 All Debugging Information - DEBUG WATCOM ALL

3.13.5 Global Symbol INformationcccoeeeveineineinense e
3.13.6 Globa Symbols for the NetWare 386 Debugger - DEBUG

NOVELL oottt

3.13.7 The ONLY EXPORTS Debugging Optionccccceeeeiereviervennenes

3.13.8 Using DEBUG DIreCtiVEScceevveieiieiece e se et

3.13.9 Removing Debugging Information from an Executable File

3.14 The DESCRIPTION OPLION ...coooviviierieieiesirie et

3.15 The DISABLE DIr€CHVEccooevuiieieiiieiee ettt

3.16 THE DOSSEG OPLION ...oeieirieiireiiirieisiesieieseeie et sse s

3.17 The ELIMINATE OPLON ...cveeiieeeeeieere et

3.18 The ENDLINK DIFECHVE ...cveeeieeeeieere et ste e see e

3.19 The EXIT Option

3.20 The EXPORT DITECHVE ...c.covieeeieeiirieiesieiesieesieesieesie et
3.20.1 EXPORT - OS/2, Win16, Win32 0nlycccceeuverernrenenenenenenens
3.20.2 EXPORT - ELF ONlY ..vcviieiiieierece e
3.20.3 EXPORT - NEtWare ONlYcccocererereriiniine e see e
2 I L= o I T = o 1 YU
3.22 The FORMAT DITECLVEcoueieriecierie sttt s
3.23 The HEAPSIZE OPLION ...ccccvveiiictisietisiee et
324 ThEHELP OPLIONcueiiiiiiiirieeetesieie ettt ere e
325 The IMPFILE OPLION ..ottt
3.26 The IMPLIB OPLIONocveieieiesese e ettt seenen
3.27 The IMPORT DITECHVE ...cevvieeeieeierieterieeseeesieesiees et
3.27.1 IMPORT - OS/2, Win16, Win32 0nlycccccoverernrerenenenenenens
3.27.2IMPORT - ELF ONlY .ot
3.27.3IMPORT - N&tWar€ Onlyccoceverererinine e

3.28 The @ Directive

Vi

24
26
27
28
29
30
31
32
33

35
37
38
38
39
39

39
40
40
41
42
43
45
47
48
49
50
50
52
53

56

65
66
67
68
68
69
69
71

Table of Contents

3. 29 The INCREMENTAL OPLION ..vcvvieeiiieisiecsieeseses et 74
3.30 The INTERNALRELOCS OPLIONcccvvveriiererieisieesienesesessesaeesseesseessens 76
3.31 The LANGUAGE DIr€CLIVEccoceeeriiieisieisieisees et 77
3.32 ThELIBFILE DIrECLVE ...ccccvietieetisietisieiesiet sttt 78
3.33 The LIBPATH DIF€CHIVEcceeueeeeeeeeieiese st 80
3.34 The LIBRARY DIFECHIVEccveeeeieeeieere e see e e sees e se e sre e 82
3.34.1 Searching for Libraries Specified in Environment Variables 83
3.34.2 Converting Libraries Created using Phar Lap 386|LIB 84
3.35 The LINEARRELOCS OPLION ...c.coveiviiiriiisienisesisesiee st 85
3.36 THELONGLIVED OPLONooveeiriieiriiirieisieesesesieseeie s sesesseessenes 86
3.37 The MANGLEDNAMES OPLiONocveiieiieinieeseesesese s 87
3.38 The MANYAUTODATA OPLION ..ccocveiiieririeiesieesieesiesesiesessessse e seens 88
339 TNEMAP OPLION ..ottt er e 89
3.40 The MAXDATA OPLON ..veeeiieiieisiee et 90
3.41 The MAXERRORS OPtiON ...cveeeieieeeeeeeeese e 91
342 The MESSAGES OPLON ..ottt seens 92
I R I o T A \Y N YA VAN @ o1 o o 93
3.44 The MODNAME OPLIONccvcieiieeisere et ste e s e e e e e srenes 94
3.45 The MODFILE DITECHIVE ...cviveeireeeirieeirieisieisteesie st ssens 95
3.46 The MODTRACE DITECHVEoceeviieiiieiirieesieesie s 96
3.47 The MODULE DITECHVEcuvvvevirieiirieeirieisieesieesieese et ssens 97
3.48 The MULTILOAD OPLiON ...oovceeieieiriiisieesieseeiesisieseeeseesesessessesessessssensssenes 98
349 The NAME DITECLVE ...ooiuiiiiiieieie et 99
3.50 The NAMELEN OpPtioNcovvveviiiciiiieisiei ettt 100
3.51 The NEWFILES OPtiONcccveeeieeeesese e e seesee e 101
3.52 The NEWSEGMENT DIT€CIVE ...cevcvvireirieresieiene e 102
3.53 The NLMFLAGS OPtiON ...cccveeeeeisere et sie e e e seeseesseee e eeese e ssenns 103
3.54 The NOAUTODATA OPLION ..oceeveieeirieiirieirieesiesesiees et 104
3.55 The NODEFAULTLIBS OPLION ...ccocvviieiieiesieesie et 105
3.56 ThHe NORELOCS OPLIONcvvvevirieririeiirieesieesiesesieesiesessesessessesesessessesessenes 106
3.57 ThHe NOSTDCALL OPLON ...ocveiriieiriiiriiisieseeeseeie e sessesseessensssenes 107
3.58 The OBJALIGN OPLiON ..cccvveeeiieeiiieiirieisieesieeseeesiesessesessessesessesessesessenes 108
3.59 The OLDLIBRARY OPLONccoeiieiieisieisieisees et 109
3.60 The OFFSET OPLiON ..c.ovvceiieeeiieciitcesteestesee et 110
3.60.1 OFFSET - OS/2, WIN32 ONlY ...coovvreirieieriesieeeeeseeeeeseee e e 110
3.60.2 OFFSET - PharLap ONlYccooeirieirierieneseeseee e 111
3.60.3 OFFSET - QNX ONlY .eveiiiiiririeerieree e 111
3.61 The ONEAUTODATA OPLON ...cuveeiiriiirieirieisesee e 113
3.62 The OPTION DIFECLIVE ...oceevieeiireeiirieiirieiesieeseeesieeseeesie e seens 114
3.63 The OPTLIB DITECHVEocvvveereiieiiieieseeiesiee st 115
3.63.1 Searching for Optional Libraries Specified in Environment
VaTahlS ... s 116

vii

Table of Contents

3.64 The OSDOMAIN OPLION ...cvvvvevirieiirieirieisieeseestesee s essenes 117
3.65 The PSEUDOPREEMPTION OpPLioNccooveviieisieesieesenesiesese s e seseenenns 118
3.66 The OSNAME OPLION ...ocvvveiiiiieiiietisiete e ssens 119
3.67 The PACKCODE OPLION ...cccvcviiveeiiieisiei et sssens 120
3.68 The PACKDATA OPLION ..cueieieiieierieierieesteesieesiese e esnens 121
3.69 The PATH DIFECLIVE ...ocvveieie e ettt snenen 122
3. 70 The PRIVILEGE OPLIONccovieiirieiirieiiriecrieesieesieesie e essens 124
3. 71 The PROTMODE OPLION ...cvvvevirieeirieiirircriiesienesiesesie e esseessenes 125
3.72The QUIET OPLION ..cecviieiirieiereeiesieieseee sttt st ses b sesseseese e 126
3.73 The REDEFSOK OPHIONccovieiirieiirieeirieisieesieesieesieseeseseesesaesesessessesessenes 127
3. 74 The REENTRANT OPLON ...ooveiiiiiiiiiriiisieseeesesee s sesessesessssessenessenes 128
3.75 The REFERENCE Dil€CHVEc.ccvvveirieirieirieeseis e 129
3.76 The RESOURCE OPLiONccvvvevivieiiiieisieisieesieesieeeessese e ssesesssssssesessenes 130

3.76.1 RESOURCE - 0S/2, Win16, Win32 onlyccceceevrervsreresienennnn. 130

3.76.2 RESOURCE - QNX ONIY ..ocvviiiriiiersiesirseesese e seeseeseeseeneeeeeeeenens 130
3.77 The RUNTIME DITECLIVE ..ot 132

3771 RUNTIME - WIN32 0NlY ..oveviieiieerieriesees e 132

3772 RUNTIME - PharLap OnlYccccevverniririeneenee e 133
3.78 The RWRELOCCHECK OPLioNccviieinieisieesieesieese e 136
3.79 The SCREENNAME OPLiON ...ccoeviieiirieierieesieesieses e 137
3.80 The SEGMENT DIF€CLIVE ...c.ovveeireeeiriririeisieeeeseeie s essenes 138
3.81 The SHARELIB OPLON ...ccccovveeiieiirieiirieisieesieesieesesesse s seesessens 141
3.82 The SHOWDEAD OPLiON ..c.covceiiieeiiieisiresieseeeseeesie s saesessesessesssseessenes 142
3.83 The SORT DITECLIVEocveieriiieisiese e ettt st s nean 143
3.84 The STACK OPLION ...cceiieiireiieieeierieie et 144
3.85 The START OPLiON ...ccevieiirieieieeierieieriee ettt st s s 145
3.86 The STARTLINK DIr€CLIVEcceviiriieiieirieere s 146
3.87 The STATICS OPLION ...coeceviecieciece sttt re e srees 147
3.88 ThE STUB OPLiON ...ecvevieiirieirieresieseeieseete s et seese et sesse e sessesessesens 148
3.89 The SYMFILE OPLiON ..oveviviiiieiieieieesieieseee st 149
3.90 The SYMTRACE DITECLVEoceeeiieiieiieesieesees et 151
3.91 The SYNCHRONIZE OPLiON ...cccvvveeirieinieisieisieesesis e et sesesessesees 152
3.92 The SYSTEM DIFECLIVE ..c.ccvvveiiieetiiieiisieesiee e 153

3.92.1 Special System NaAMESccviiriiriieee e 156
3.93 The THREADNAME OPtiONccooveierereeeeereeeeee e 157
3.94 The TOGGLERELOCS OpPLiONcoveiiiiiriiirienieenieesie et 158
3.95 The UNDEFSOK OpPLtioNccccveeiieeisereseseseseeseesieseeseeeeeseseesese e sseses 159
3.96 The VERBOSE OPLiONcceevevieieiierese e seeseese e s s se e ssesse e e sreneas 160
3.97 The VERSION OPLIONccviiiiriiirieietisesesiee s ssenes 161
3.98 The VFREMOVAL OPLION ...cooiieieiriiirieieiesieiesieieseeeseesesseessees e ssssees 162
3.99 The XDCDATA OPLON ..oeeiieeiieierieiesieeseeesteesieesesesse s ssesessenes 163

viii

Table of Contents

4 The DOS Executable File FOrMat ..o 165
4.1 MEMOIY LAYOULooeiiieiieieieeesie ettt st s s ne s 167

4.2 The Watcom Linker Memory ReQUITEMENLSccoevererereneeneeeereeecneeenas 168
A.3USING OVENTAYS ...viiciiecieie ettt 168

4.4 Converting Microsoft Response Filesto Directive Filescccoovveninenee 168

5 The ELF Executable File FOrMAL ... 171
LN Y = 0T = Y | S 173

5.2 The Watcom Linker Memory ReqUIrEMENLSccceveeeevieveenesieseeseeseeseenens 174

6 The NetWare 386 Executable File FOrmMatcccovveineineineneeneeseeseeseeees 175
6.1 NetWare Loadable MOAUIES ... 177

6.2 MEMONY LAYOUL ..ot 178

6.3 The Watcom Linker Memory ReqUIrEMENtSccoeeereenenenenenieneseeeene 179

7 The OS/2 Executable and DLL Fil€ FOrMAELScccoveeeeererereseneseseeseseeseeeeneseenens 181
7.1 Dynamic Link LiBrariesccccoveiieiisiesie e 184

7.1.1 Creating aDynamic Link Libraryccccoeveievevinenieneseeeceeeenens 184

7.1.2Using aDynamic Link Librarycccocoeevieveseneseeieesceeeseseenens 185

T2 MEMOTY LAYOULveieieiiieiiiicieesies ettt et e ensaesnnee e 185

7.3 The Watcom Linker Memory ReqUIreMentsc.ccoceeerereereneseeseeseesenenne 186

7.4 Converting Microsoft Response Files to Directive Fles ..., 187

8 The Phar Lap Executable File FOrMat ... 189
8.1 32-hit Protected-Mode ApPPliCaLiONScccveerirerinreeeee e 191

8.2 MEMONY USAGE ...ttt e e 191

oG AV = oo = Y | RS 192

8.4 The Watcom Linker Memory ReqUIrEMENtSccccevcevvevereeneneseeseeseeseenenns 193

9 The QNX Executable FIle FOrmMatcccooevieiiiiesececeec et 195
0.1 MEMONY LBYOUL ..ottt s 197

9.2 The Watcom Linker Memory ReqUIreMeNtscccoceeerereereneseeseeseesennene 198

10 The Win16 Executable and DLL File FOrMatscooeverereneerieieienenenesesiesee s 199
10.1 Fixed and Moveabhle SEgMENLScccireereireire s 201

10.2 Discardable SEgMENLEScccireirieiiriereere et 202

10.3 DynamiC Link Librariesccocceeiiisesiesn e sessesne e 202

10.3.1 Creating aDynamic Link Librarycccccoevvevinienessscieseeeenens 203

10.3.2 Using aDynamic Link Libraryccccocvveeeveveieeieieeieeeneseenens 204

10.4 MEMOIY LAYOUL ...ooiviiieiiiiieiieeiee sttt st et et s st be e st nne e s e sseenaae e 204

10.5 The Watcom Linker Memory ReqUiremMentscccceeeeereneneneseeseeneenes 205

10.6 Converting Microsoft Response Files to Directive Filesccccvenenene 205

Table of Contents

11 The Win32 Executable and DLL File FOrmMatsccooviirinnineiineeseeneeseens 207
11.1 DynamicC Link LiDraries ... 209

11.1.1 Creating aDynamic Link Libraryccccceoeeoineineienenenenennene 210

11.1.2 Using aDynamic Link Library ... 211

112 MEMONY LAYOUL ..o e 211

11.3 The Watcom Linker Memory ReqUIremMentscccoeeevererenenenesenesienenns 212

12 Watcom Linker DiagnoSstiC MESSAgESccuvvvereereeieereeeeeeesesesreseesseseessesseseessesseseens 213

The WATCOM Linker

The WATCOM Linker

1 The Watcom Linker

The Watcom Linker is alinkage editor (linker) that takes object and library files as input and
produces executable files as output. The following object module and library formats are
supported by the Watcom Linker.

* The standard Intel Object Module Format (OMF).

* Microsoft’s extensions to the standard Intel OMF.

* Phar Lap's Easy OMF-386 object module format for linking 386 applications.

» The COFF object module format.

* The ELF object module format.

* The OMF library format.

» The AR (Microsoft compatible) object library format.

The Watcom Linker is capable of producing a number of executable file formats. The
following lists these executable file formats.

» DOS executablefiles

* ELF executablefiles

* executable files that run under FlashTek’s DOS extender

« executable files that run under Phar Lap’s 386|DOS-Extender

« executable files that run under Tenberry Software’s DOS4G and DOS/AGW DOS
extenders

* executable files that run under Autodesk’s AutoCAD Development System

* NetWare Loadable Modules (NLMs) that run under Novell’s NetWare 386 operating
system

The Watcom Linker 3

The WATCOM Linker

» 0S/2 executable files including Dynamic Link Libraries

* QNX executable files

* 16-bit Windows (Win16) executable filesincluding Dynamic Link Libraries

* 32-bit Windows (Win32) executable filesincluding Dynamic Link Libraries
In addition to being able to generate the above executabl e file formats, the Watcom Linker
also runs under avariety of operating systems. Currently, the Watcom Linker runs under the
following operating systems.

* DOS

* 0S/2

« QNX

* Windows NT

» Windows 95
We refer to the operating system upon which you run the Watcom Linker as the "host".
The chapter entitled "Linking Executable Files for Various Systems" on page 5 summarizes
each of the executable file formats that can be generated by the linker. The chapter entitled

"Linker Directives and Options' on page 19 describes all of the linker directives and options.
The remaining chapters describe aspects of each of the executable file formats.

4 The Watcom Linker

2 Linking Executable Files for Various
Systems

The Watcom Linker command line format is as follows.

wlink {directive}

where directiveis a series of Watcom Linker directives specified on the command lineor in
one or morefiles. If the directives are contained within afile, the"@" character is used to
reference that file. If no file extension is specified, afile extension of "Ink" is assumed.

Example:
W ink nane testprog @irst @econd option nap

In the above example, directives are specified on the command line (e.g., "name testprog" and
"option map") and in files (e.g., FI RST. LNK and SECOND. LNK).

2.1 Using the SYSTEM Directive

For each executable file format that can be created using the Watcom Linker, a specific
SYSTEM directive may be used. The SYSTEM directive selects a subset of the available
directives necessary to create each specific executable file format.

System Description

com 16-bit x86 DOS ".COM" executable
dos 16-bit x86 DOS executable

dos4g 32-hit x86 DOS/4GW executable

dos4gnz non-zero based 32-bit x86 DOS/4GW executable

Using the SYSTEM Directive 5

The WATCOM Linker

6

netware
novell
0s2

0s2 dll
0Ss2v2
os2v2 dll
0S2vZ2_pm
pharlap
tnt

gnx
gnx386
x32r

X32rv

x32s

X32sv

windows
windows_dll
win95
win95 dil

nt

nt_win

32-bit x86 NetWare L oadable Module

synonym for "netware"

16-bit x86 OS/2 executable

16-bit x86 OS/2 Dynamic Link Library

32-bit x86 OS/2 executable

32-bit x86 OS/2 Dynamic Link Library

32-bit x86 OS/2 Presentation Manager executable
32-bit x86 Phar Lap executable

32-hit x86 Phar Lap TNT executable

16-bit x86 QNX executable

32-bit x86 QNX executable

32-bit x86 FlashTek executable using register-based calling conventions

32-bit x86 virtual-memory FlashTek executable using register-based calling
conventions

32-hit x86 FlashTek executable using stack-based calling conventions

32-hit x86 virtual-memory FlashTek executable using stack-based calling
conventions

16-bit x86 Windows 3.x executable

16-bit x86 Windows 3.x Dynamic Link Library
32-bit x86 Windows 95 executable

32-bit x86 Windows 95 Dynamic Link Library
32-bit x86 Windows NT character-mode executable

32-bit x86 Windows NT windowed executable

Using the SYSTEM Directive

Linking Executable Files for Various Systems

win32 synonym for "nt_win"
nt_dll 32-bit x86 Windows NT Dynamic Link Library

win386 32-bit x86 Watcom extended Windows 3.x executable or Dynamic Link Library

ads 32-hit x86 AutoCAD Development System executable
eadi 32-bit x86 Emulation AutoCAD Device Interface
fadi 32-hit x86 Floating-point AutoCAD Device Interface

The various systems that we have listed above are defined in special linker directive files
which are plain ASCI| text files that you can edit. Thesefilesare called W.I NK. LNK and
WLSYSTEM LNK.

Thefile W.I NK. LNK isaspecia linker directivefile that is automatically processed by the
Watcom Linker before processing any other directives. On aDOS, 0S/2, or Windows-hosted
system, thisfile must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the / et ¢ directory. A
default version of thisfileislocated in the \ WATCOM BI NWdirectory on DOS-hosted
systems, the\ WATCOM BI NP directory on OS/2-hosted systems, the / et ¢ directory on
QNX-hosted systems, and the \ WATCOM BI NNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLI NK. LNK includes the file W.SYSTEM LNK which
islocated in the \ WATCOM BI NW(directory on DOS, OS/2, or Windows-hosted systems and
the/ et ¢ directory on QNX-hosted systems.

Thefiles WLl NK. LNK and WL.SYSTEM LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

In the following sections, we show some of the typical directives that you might use to create
aparticular executable file format. The common directives are described in the chapter
entitled "Linker Directives and Options' on page 19. They are "common” in the sense that
they may be used with any executable format. There are other, less general, directives that
may be specified for aparticular executable format. In each of the following sections, we
refer you to chapters in which you will find more information on the directives available with
the executable format used.

At this point, it should be noted that various systems have adopted particular executable file
formats. For example, AutoCAD applications use a Phar Lap executable file format and both
the Tenberry Software DOS/4G(W) and FlashTek DOS extenders support one of the OS/2
executable file formats. It isfor this reason that you may find that we direct you to a chapter
which would, at first glance, seem unrelated to the executable file format in which you are
interested.

Using the SYSTEM Directive 7

The WATCOM Linker

To summarize, the steps that you should follow to learn about creating a particular executable
are:

1. Look for asection in this chapter that describes the executable format in which you
are interested.

2. Seethechapter entitled "Linker Directives and Options' on page 19 for a
description of the common directives.

3. If you require additional information, see also the chapter to which we have
referred you.

4. Also check the Watcom C/C++ Programmer’s Guide or Watcom FORTRAN 77

Programmer’ s Guide for more information on creating specific types of
applications.

2.2 Linking 16-bit x86 Executable Files

The following sections describe how to link avariety of 16-bit executable files.

2.2.1 Linking 16-bit x86 DOS Executable Files

To create thistype of file, use the following structure.
system dos
option map
name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The DOS Executable File Format" on page
165.

2.2.2 Linking 16-bit x86 DOS .COM Executable Files

To create thistype of file, use the following structure.

8 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

system com

option map

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The DOS Executable File Format" on page
165.

2.2.3 Linking 16-bit x86 OS/2 Executable Files

To create thistype of file, use the following structure.

system 0s2

option nap

name app_nane
file obj 1, obj 2,
l[ibrary 1libl, |ib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.2.4 Linking 16-bit x86 OS/2 Dynamic Link Libraries

To create thistype of file, use the following structure.
system o0s2 dll
option nap
nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.2.5 Linking 16-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

Linking 16-bit x86 Executable Files 9

The WATCOM Linker

system gnx

option map

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page
195.

2.2.6 Linking 16-bit x86 Windows 3.x Executable Files

To create thistype of file, use the following structure.

system w ndows
option nap

nane app_nane
file obj 1, obj 2,
l[ibrary 1libl, |ib2,

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

2.2.7 Linking 16-bit x86 Windows 3.x Dynamic Link Libraries

To create thistype of file, use the following structure.

system w ndows_dl |
option nap

nane app_nane
file obj 1, obj 2,
library 1ibl, lib2,

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"
on page 199.

10 Linking 16-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3 Linking 32-bit x86 Executable Files

The following sections describe how to create a variety of 32-bit executable files.

2.3.1 Linking 32-bit x86 AutoCAD Development System Executable
Files

To create thistype of file, use the following structure.

system ads

option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

2.3.2 Linking 32-bit x86 AutoCAD Device Interface Executable Files

To create thistype of file, use the following structure for an emulation AutoCAD Device
Interface.

system eadi
option nap
name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,
To create afloating-point AutoCAD Device Interface, specify

system fadi.

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

Linking 32-bit x86 Executable Files 11

The WATCOM Linker

2.3.3 Linking 32-bit x86 DOS/AGW Executable Files

To create thistype of file, use the following structure.

system dos4g
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats'

on page 181.

2.3.4 Linking 32-bit x86 FlashTek Executable Files

To create these files, use one of the following structures.

system x32r

option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

If the system isx32r, a FlashTek executablefile is created for an application using the register
calling convention.

system x32rv
option nap

name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

If the system is x32rv, avirtual-memory FlashTek executable fileis created for an application
using the register calling convention.

system x32s
option map

name app_nane
file obj 1, obj 2,
library 1ibl, lib2,

If the system isx32s, a FlashTek executablefileis created for an application using the stack
calling convention.

12 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

system
option
name
file
library

x32sv

map
app_nane
obj 1, obj 2,
libl, 1ib2,

If the system is x32sv, avirtual-memory FlashTek executablefileis created for an application
using the stack calling convention.

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats'

on page 181.

2.3.5 Linking 32-bit x86 Novell NetWare Loadable Modules

To create thistype of file, use the following structure.

system
option
name
file
library
nodul e

i mport

net war e

map

app_nane

obj 1, obj 2,

[ibl, lib2,

nod_nane
@AMATCOWA novi \ nod_nane. i np

For more information, see the chapter entitled "The NetWare 386 Executable File Format" on

page 175.

2.3.6 Linking 32-bit x86 OS/2 Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

0s2v?2

map
app_nane
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"

on page 181.

Linking 32-bit x86 Executable Files 13

The WATCOM Linker

2.3.7 Linking 32-bit x86 OS/2 Dynamic Link Libraries

To create thistype of file, use the following structure.

system os2v2 dl |
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS2 Executable and DLL File Formats'
on page 181.

2.3.8 Linking 32-bit x86 OS/2 Presentation Manager Executable Files

To create thistype of file, use the following structure.

system 0s2v2_pm
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The OS/2 Executable and DLL File Formats"
on page 181.

2.3.9 Linking 32-bit x86 Phar Lap Executable Files

To create thistype of file, use the following structure.

system pharlap
option map

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Phar Lap Executable File Format" on
page 189.

14 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

2.3.10 Linking 32-bit x86 Phar Lap TNT Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

t nt

map
app_nane
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 207.

2.3.11 Linking 32-bit x86 QNX Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

gnx386

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The QNX Executable File Format" on page

195.

2.3.12 Linking 32-bit x86 Extended Windows 3.x Executable

To create thistype of file, use the following structure.

system
option
name
file
[ibrary

wi 386

map
app_nane
obj 1, obj 2,
[ibl, lib2,

After linking this executable, you must bind the Watcom 32-bit Windows-extender to the
executable (a. REX file) to produce a Windows executable (a . EXE file).

wbi nd

-n app_nanme

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats"

on page 199.

Linking 32-bit x86 Executable Files 15

The WATCOM Linker

2.3.13 Linking 32-bit x86 Extended Windows 3.x Dynamic Link
Libraries

To create thistype of file, use the following structure.

system w n386
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

After linking this executable, you must bind the Watcom 32-bit Windows-extender for DLLsS
to the executable (a . REX file) to produce a Windows Dynamic Link Library (a . DLL file).

wbind -n -d app_nane

For more information, see the chapter entitled "The Win16 Executable and DLL File Formats'
on page 199.

2.3.14 Linking 32-bit x86 Windows 95 Executable Files

To create thistype of file, use the following structure.

system wi n95
option nap

name app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'
on page 207.

2.3.15 Linking 32-bit x86 Windows 95 Dynamic Link Libraries

To create thistype of file, use the following structure.

system wi n95 dl |
option nap

nane app_nane
file obj 1, obj 2,
[ibrary 1ibl, lib2,

16 Linking 32-bit x86 Executable Files

Linking Executable Files for Various Systems

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 207.

2.3.16 Linking 32-bit x86 Windows NT Character-Mode Executable

Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt

map
app_nane
obj 1, obj 2,
[ibl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 207.

2.3.17 Linking 32-bit x86 Windows NT Windowed Executable Files

To create thistype of file, use the following structure.

system
option
name
file
library

nt _wn

map
app_nane
obj 1, obj 2,
libl, 1ib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 207.

2.3.18 Linking 32-bit x86 Windows NT Dynamic Link Libraries

To create thistype of file, use the following structure.

system
option
name
file
library

nt _dl |

map
app_nane
obj 1, obj 2,
libl, lib2,

For more information, see the chapter entitled "The Win32 Executable and DLL File Formats'

on page 207.

Linking 32-bit x86 Executable Files 17

The WATCOM Linker

18 Linking 32-bit x86 Executable Files

3 Linker Directives and Options

The Watcom Linker supports alarge set of directives and options. The following sections
present these directives and options in aphabetical order. Not al directives and options are
supported for al executable formats. When a directive or option applies only to a subset of
the executable formats that the linker can generate, the supporting formats are noted. In the
following example, the notation indicates that the directive or option is supported for al
executable formats.

Example:
Formats: All

In the following example, the notation indicates that the directive or option is supported for
0S/2, 16-bit Windows and 32-bit Windows executable formats only.

Example:
Formats: 0OS/2, Wnl6, Wn32

Directives tell the Watcom Linker how to create your program. For example, using directives
you can tell the Watcom Linker which object files are to be included in the program, which
library filesto search to resolve undefined references, and the name of the executablefile.

Thefile W.I NK. LNK isaspecia linker directivefile that is automatically processed by the
Watcom Linker before processing any other directives. On aDOS, 0S/2, or Windows-hosted
system, thisfile must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, thisfile should be located inthe / et ¢ directory. A
default version of thisfileislocated in the \ WATCOM Bl NWdirectory on DOS-hosted
systems, the\ WATCOM BI NP directory on OS/2-hosted systems, the / et ¢ directory on
QNX-hosted systems, and the \ WATCOM BI NNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLI NK. LNK includes the file W.SYSTEM LNK which
islocated in the \ WATCOM BI NW(directory on DOS, OS/2, or Windows-hosted systems and
the/ et ¢ directory on QNX-hosted systems.

ThefilesWLI NK. LNK and WLSYSTEM LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

It is also possible to use environment variables when specifying adirective. For example, if
the LIBDIR environment variable is defined as follows,

Linker Directives and Options 19

The WATCOM Linker

set libdir=\test
then the linker directive

library %Bibdir%nylib
is equivalent to the following linker directive.

library \test\nylib
Note that a space must precede areference to an environment variable.
Many directives can take alist of one or more arguments separated by commas. Instead of a
comma-delimited list, you can specify a space-separated list provided the list is enclosed in
braces (e.g., { space delimited list }). For example, the"FILE" directive can take alist of
object file names as an argument.

file first,second,third,fourth
The alternate way of specifying thisis asfollows.

file {first second third fourth}

Where this comesin handy isin make files, where alist of dependentsisusualy a
space-delimited list.

OBJS = first second third fourth

wWink file {$(objs)}

The following notation is used to describe the syntax of linker directives and options.

ABC All itemsin upper case are required.

[abc] Theitem abc is optional.

{abc} Theitem abc may be repeated zero or more times.
{abc}+ Theitem abc may be repeated one or more times.
alb|c One of a, b or ¢ may be specified.

20 Linker Directives and Options

Linker Directives and Options

a:=b

Theitem ais defined in terms of b.

Certain characters have special meaning to the linker. When a specia character must appear

in aname, you can imbed the string that makes up the name inside apostrophes (e.g.,
"name@8'’). This preventsthe linker from interpreting the special character in its usual
manner. Thisisalso truefor file or path names that contain spaces (e.g., ' \program

files\softwaré\mylib’). Normally, the linker would interpret a space or blank in afile name as

aseparator. The special characters are listed below:

Equal s

Left Parenthesis

Ri ght Parenthesis
Conma

Peri od

Left Brace

Ri ght Brace

At Sign

Hash Mark

Per cent age Synbol

Linker Directives and Options

21

ALIAS

3.1 The ALIAS Directive

Formats: All

The"ALIAS' directive is used to specify an equivalent name for a symbol name. The format
of the"ALIAS" directive (short form "A") isasfollows.

ALIAS alias_ name=symbol_name{, alias_ hame=symbol _name}

where description:
alias name isthealiasname.
symbol_name is the symbol name to which the alias name is mapped.
Consider the following example.
al i as si ne=nysi ne

When the linker triesto resolve the reference to si ne, it will immediately substitute the name
nysi ne for si ne and begin searching for the symbol mysi ne.

22 The ALIAS Directive

ALIGNMENT (ELF, OS/2, Win16, Win32)

3.2 The ALIGNMENT Option
Formats: ELF, OS/2, Win16, Win32

The"ALIGNMENT" option specifies the alignment for segments in the executable file. The
format of the"ALIGNMENT" option (short form "A") is as follows.

OPTION ALIGNMENT=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the alignment for segments in the executable file and must be a power of 2.

In 16-bit applications, segments in the executable file are pointed to by a segment table. An
entry in the segment table contains a 16-bit value which is a multiple of the alignment value.
Together they form the offset of the segment from the start of the segment table. Note that the
smaller the value of n the smaller the executablefile.

By default, the Watcom Linker will automatically choose the smallest value of n possible.

Y ou need not specify this option unless you want padding between segments in the executable
file.

The ALIGNMENT Option 23

ANONYMOUSEXPORT (Win16, Win32)

3.3 The ANONYMOUSEXPORT Directive
Formats: Winl6, Win32

The "ANONYMOUSEXPORT" directive is an alternative to the "EXPORT" directive
described in "The EXPORT Directive" on page 50. The symbol associated with this name
will not appear in either the resident or the non-resident names table. The entry point is,
however, still available for ordinal linking.

The format of the "ANONY MOUSEXPORT" directive (short form "ANON") is as follows.

ANONYMOUSEXPORT export{,export}
or
ANONYMOUSEXPORT =lbc file

export ::= entry_name{.ordinal][=internal_name]

where description:
entry_name isthe name to be used by other applications to call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

internal_name is the actual name of the function and should only be specified if it differs
from the entry name.

Ibc_file isafile specification for the name of alibrarian command file. If no file
extension is specified, afile extension of "Ibc" isassumed. The linker will
process the librarian command file and look for commands to the librarian that

are used to create import library entries. These commands have the following
form.

++symdl | _nane[.[al tsym . export _nane][.ordi nal]
where description:
sym is the name of a symbol in aDynamic Link Library.

dil_name isthe name of the Dynamic Link Library that defines sym

24 The ANONYMOUSEXPORT Directive

ANONYMOUSEXPORT (Win16, Win32)

altsym isthe name of a symbol in aDynamic Link Library. When
omitted, the default symbol nameis sym

export_name is the name that an application that is linking to the Dynamic Link
Library usesto reference sym When omitted, the default export
nameissym

ordinal isthe ordinal value that can be used to identify syminstead of
using the name expor t _nane.

All other librarian commands will be ignored.
Notes:
1. By default, the Watcom C and C++ compilers append an underscore (') to all
function names. This should be considered when specifying entry_name and

internal_namein an "ANONY MOUSEXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., anonynousexport ' nyfunc@’).

3. The symbol associated with the entry name will not appear in either the resident or
the non-resident names table. The entry point is, however, still available for
ordinal linking. Thisdirectiveisimportant when you wish to reduce the number of
entries that are placed in the resident and non-resident names table.

The ANONYMOUSEXPORT Directive 25

ARTIFICIAL

3.4 The ARTIFICIAL Option

Formats: All

The"ARTIFICIAL" option should only be used if you are developing a Watcom C++
application. A Watcom C++ application contains many compiler-generated symbols. By
default, the linker does not include these symbolsin the map file. The"ARTIFICIAL" option
can be used if you wish to include these compiler-generated symbolsin the map file.

The format of the "ARTIFICIAL" option (short form "ART") is asfollows.

OPTION ARTIFICIAL

26 The ARTIFICIAL Option

CACHE

3.5 The CACHE Option

Formats: All

The"CACHE" and "NOCACHE" options can be used to control caching of object and library
filesin memory by the linker. When neither the "CACHE" nor "NOCACHE" option is
specified, the linker will only cache small libraries. Object files and large libraries are not
cached. The"CACHE" and "NOCACHE" options can be used to alter this default behaviour.
The "CACHE" option enables the caching of object files and large library files while the
"NOCACHE" option disables al caching.

The format of the "CACHE" option (short form "CAC") isasfollows.

OPTION CACHE

The format of the "NOCACHE" option (short form "NOCAC") is as follows.

OPTION NOCACHE

When linking large applications with many object files, caching object files will cause
extensive use of memory by the linker. On virtual memory systems such as OS/2, Windows
NT or Windows 95, this can cause extensive page file activity when real memory resources
have been exhausted. This can degrade the performance of other tasks on your system. For
this reason, the OS/2 and Windows-hosted versions of the linker do not perform object file
caching by default. This does not imply that object file caching is not beneficial. If your
system has lots of real memory or the linker is running as the only task on the machine, object
file caching can certainly improve the performance of the linker.

On single-tasking environments such as DOS, the benefits of improved linker performance
outweighs the memory demands associated with object file caching. For this reason, object
file caching is performed by default on these systems. If the memory requirements of the
linker exceed the amount of memory on your system, the "NOCACHE" option can be
specified.

The QNX operating system is a multi-tasking real-time operating system. However, it isnot a
virtual memory system. Caching object files can consume large amounts of memory. This
may prevent other tasks on the system from running, a problem that may be solved by using
the "NOCACHE" option.

The CACHE Option 27

CASEEXACT

3.6 The CASEEXACT Option

Formats: All

The"CASEEXACT" option tells the Watcom Linker to respect case when resolving
references to global symbols. That is, "ScanName" and "SCANNAME" represent two
different symbols. By default, the linker is case insensitive; "ScanName" and "SCANNAME"
represent the same symbol. The format of the "CASEEXACT" option (short form "C") isas
follows.

OPTION CASEEXACT

If you have specified the "CASEEXACT" option in the default directive files W.1 NK. LNK or
WLSYSTEM LNK, it is possible to override this option by using the "NOCASEEXACT"
option. The "NOCASEEXACT" option turns off case-sensitive linking. The format of the
"NOCASEEXACT" option (short form "NOCASE") is asfollows.

OPTION NOCASEEXACT

Thefile WLI NK. LNK isa specia linker directivefile that is automatically processed by the
Watcom Linker before processing any other directives. On aDOS, 0S/2, or Windows-hosted
system, this file must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, this file should be located in the / et ¢ directory. A
default version of thisfileislocated in the \ WATCOM Bl NWdirectory on DOS-hosted
systems, the \ WATCOM BI NP directory on OS/2-hosted systems, the / et ¢ directory on
QNX-hosted systems, and the \ WATCOM BI NNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLI NK. LNK includes the file W.SYSTEM LNK which
islocated in the \ WATCOM BI NW(directory on DOS, 0OS/2, or Windows-hosted systems and
the/ et ¢ directory on QNX-hosted systems.

ThefilesWLI NK. LNK and WLSYSTEM LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

28 The CASEEXACT Option

CHECK (NetWare)

3.7 The CHECK Option

Formats: NetWare
The"CHECK" option specifies the name of a procedure to execute beforean NLM is
unloaded. This procedure can, for example, inform the operator that the NLM isin use and

prevent it from being unloaded.

The format of the "CHECK" option (short form "CH") is as follows.

OPTION CHECK=symbol _name

where description:
symbol_name specifies the name of a procedure to execute before the NLM is unloaded.

If the "CHECK" option is not specified, no check procedure will be called.

The CHECK Option 29

COMMENT

3.8 The # Directive

Formats: All

The"#" directive is used to mark the start of acomment. All text from the "#" character to the
end of thelineis considered acomment. The format of the "#" directiveis as follows.

comment

where description:

comment isany sequence of characters.

The following directive file illustrates the use of comments.
file main, trigtest

Use my own version of "sin" instead of the
library version.

file nysin
[ibrary \math\trig

30 The # Directive

COMMIT (Win32)

3.9 The COMMIT Directive
Formats: Win32

When the operating system allocates the stack and heap for an application, it does not actually
allocate the whole stack and heap to the application when it isinitially loaded. Instead, only a
portion of the stack and heap are allocated or committed to the application. Any part of the
stack and heap that is not committed will be committed on demand.

The format of the "COMMIT" directive (short form "COM") is as follows.

COMMIT mem_type

mem_type ::= STACK=n | HEAP=n

where description:
n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

n represents the amout of stack or heap that isinitially committed to the
application. The short form for "STACK" is"ST" and the short form for
"HEAP" is"H".

If you do not specify the"COMMIT HEAP" directive then a4k heap is committed to the
application.

If you do not specify the "COMMIT STACK" directive then the default size isthe smaller of
64K or the size specified by the "STACK" option. See the section entitled "The STACK
Option" on page 144 for more information on specifying a stack size.

The COMMIT Directive 31

COPYRIGHT (NetWare)

3.10 The COPYRIGHT Option

Formats: NetWare

The"COPYRIGHT" option specifies copyright information that is placed in the executable
file. Theformat of the "COPYRIGHT" option (short form "COPYR") isas follows.

OPTION COPYRIGHT ’string’

where description:

string specifies the copyright information.

32 The COPYRIGHT Option

CUSTOM (NetWare)

3.11 The CUSTOM Option

Formats: NetWare

The format of the "CUSTOM" option (short form "CUST") is as follows.

OPTION CUSTOM=file name

where description:

file_ name specifiesthe file name of the custom datafile.

The custom datafile is placed into the executable file when the application is linked but is
really not part of the program. When the application is loaded into memory, the information

extracted from a custom datafile is not loaded into memory. Instead, information is passed to
the program (as arguments) which allows the access and processing of thisinformation.

The CUSTOM Option 33

CVPACK

3.12 The CVPACK Option

Formats: All

This option is only meaningful when generating Microsoft Codeview debugging information.
This option causes the linker to automatically run the Watcom Codeview 4 Symbolic
Debugging Information Compactor, CVPACK, on the executable that it has created. Thisis
necessary to get the Codeview debugging information into a state where the Microsoft
Codeview debugger will accept it.

The format of the "CVPACK" option (short form "CVP") isas follows.

OPTION CVPACK

For more information on generating Codeview debugging information into the executable, see
the section entitled "The DEBUG Directive" on page 35

34 The CVPACK Option

DEBUG

3.13 The DEBUG Directive

Formats: All

The "DEBUG" directive is used to tell the Watcom Linker to generate debugging information
in the executable file. This extrainformation in the executable fileis used by the Watcom
Debugger. The format of the "DEBUG" directive (short form "D") is asfollows.

DEBUG dbtype [dblis] |
DEBUG [dblis]

db_type ::= DWARF | WATCOM | CODEVIEW | NOVELL
db_list ::=[db_option{,db_option}]
db_option ::=LINES| TYPES | LOCALS| ALL

DEBUG NOVELL only
db_option ::= ONLYEXPORTS | REFERENCED

The Watcom Linker supports four types of debugging information, "DWARF" (the default),
"WATCOM", "CODEVIEW", or "NOVELL".

DWARF

WATCOM

(short form "D") specifiesthat all object files contain Dwarf format debugging
information and that the executable file will contain Dwarf debugging
information.

This debugging format is assumed by default when none is specified.

(short form "W") specifiesthat all object files contain WATCOM format
debugging information and that the executable file will contain WATCOM
debugging information. Thisformat permits the selection of specific classes of
debugging information (db_list) which are described below.

CODEVIEW

(short form "C") specifiesthat all object files contain Codeview (CV4) format
debugging information and that the executable file will contain Codeview
debugging information.

It will be necessary to run the Microsoft Debugging Information Compactor,

CVPACK, on the executable that it has created. For information on requesting
the linker to automatically run CVPACK, see the section entitled "The

The DEBUG Directive 35

DEBUG

CVPACK Option" on page 34 Alternatively, you can run CVPACK from the
command line.

NOVELL (short form "N") specifiesaform of global symbol information that can only be
processed by the NetWare 386 debugger.

For the WATCOM debugging information format, we can be selective about the types of
debugging information that we include with the executable file. We can categorize the types
of debugging information as follows:

* global symbol information

* line numbering information

* local symbol information

* typing information

 NetWare 386 global symbol information

The following options can be used with the "DEBUG WATCOM" directive to control which
of the above classes of debugging information isincluded in the executablefile.

LINES (short form "LI") specifies line numbering and global symbol information.
LOCALS (short form"LO") specifieslocal and global symbol information.
TYPES (short form "T") specifies typing and global symbol information.
ALL (short form "A") specifies all of the above debugging information.
ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to
exported symbols. This option may only be used with Netware executable

formats.

The following options can be used with the "DEBUG NOVELL" directive to control which of
the above classes of debugging information isincluded in the executablefile.

36 The DEBUG Directive

DEBUG

ONLYEXPORTS
(short form "ONL") restricts the generation of global symbol information to
exported symbols.

REFERENCED

(short form "REF") restricts the generation of symbol information to referenced
symbolsonly.

Note: The position of the "DEBUG" directiveisimportant. Thelevel of debugging
information specified in a"DEBUG" directive only applies to object files and libraries that
appear in subsequent "FILE" or "LIBRARY" directives. For example, if "DEBUG
WATCOM ALL" wasthe only "DEBUG" directive specified and was also the last linker
directive, no debugging information would appear in the executablefile.

Only global symbol information is actually produced by the Watcom Linker; the other three
classes of debugging information are extracted from object modules and copied to the
executable file. Therefore, at compile time, you must instruct the compiler to generate local
symbol, line numbering and typing information in the object file so that the information can
be transferred to the executable file. 1f you have asked the Watcom Linker to produce a
particular class of debugging information and it appears that none is present, one of the
following conditions may exist.

1. Thedebugging information is not present in the object files.
2. The"DEBUG" directive has been misplaced.

The following sections describe the classes of debugging information.

3.13.1 Line Numbering Information - DEBUG WATCOM LINES

The"DEBUG WATCOM LINES" option controls the processing of line numbering
information. Line numbering information is the line number and address of the generated
code for each line of source code in a particular module. This allows Watcom Debugger to
perform source-level debugging. When the Watcom Linker encounters a"DEBUG
WATCOM" directivewith a"LINES" or "ALL" option, line number information for each
subsequent object module will be placed in the executable file. Thisincludesall object
modules extracted from object files specified in subsequent "FILE" directives and object
modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

The DEBUG Directive 37

DEBUG

Note: All modules for which line numbering information is requested must have been
compiled with the "d1" or "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LINES' or "ALL" option terminates
the processing of line numbering information.

3.13.2 Local Symbol Information - DEBUG WATCOM LOCALS

The"DEBUG WATCOM LOCALS" option controls the processing of local symbol
information. Loca symbol information is the name and address of all symbolslocal to a
particular module. Thisallows Watcom Debugger to locate these symbols so that you can
reference local data and routines by name. When the Watcom Linker encounters a"DEBUG
WATCOM" directivewitha"LOCALS" or "ALL" option, local symbol information for each
subsequent object module will be placed in the executable file. Thisincludesall object
modul es extracted from object files specified in subsequent "FILE" directives and object
modules extracted from libraries specified in subsequent "LIBRARY" or "FILE" directives.

Note: All modules for which local symbol information is requested must have been
compiled with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a"LOCALS" or "ALL" option
terminates the processing of local symbol information.

3.13.3 Typing Information - DEBUG WATCOM TYPES

The "DEBUG WATCOM TY PES" option controls the processing of typing information.
Typing information includes a description of al types, structures and arrays that are defined in
amodule. ThisallowsWatcom Debugger to display variables according to their type. When
the Watcom Linker encountersa"DEBUG WATCOM" directivewitha"TYPES" or "ALL"
option, typing information for each subsequent object module will be placed in the executable
file. Thisincludes all object modules extracted from object files specified in subsequent
"FILE" directives and object modules extracted from libraries specified in subsequent
"LIBRARY" or "FILE" directives.

38 The DEBUG Directive

DEBUG

Note: All modules for which typing information is requested must have been compiled
with the "d2" option.

A subsequent "DEBUG WATCOM" directive without a"TYPES" or "ALL" option
terminates the processing of typing information.

3.13.4 All Debugging Information - DEBUG WATCOM ALL

The"DEBUG WATCOM ALL" option specifiesthat "LINES", "LOCALS", and "TY PES"
options are requested. The"LINES" option controls the processing of line numbering
information. The"LOCALS" option controls the processing of local symbol information.
The"TYPES' option controls the processing of typing information. Each of these optionsis
described in aprevious section. A subsequent "DEBUG WATCOM " directive without an
"ALL" option discontinues those options which are not specified in the list of debug options.

3.13.5 Global Symbol Information

Global symbol information consists of all the global symbolsin your program and their
address. This allows Watcom Debugger to locate these symbols so that you can reference
global data and routines by name. When the Watcom Linker encounters a"DEBUG"
directive, global symbol information for all the global symbols appearing in your program is
placed in the executablefile.

3.13.6 Global Symbols for the NetWare 386 Debugger - DEBUG
NOVELL

The NetWare 386 operating system has a built-in debugger that can be used to debug
programs. When "DEBUG NOVELL" is specified, the Watcom Linker will generate global
symbol information that can be used by the NetWare 386 debugger. Note that any line
numbering, local symbol, and typing information generated in the executable file will not be
recognized by the NetWare 386 debugger. Also, WSTRIP cannot be used to remove this
form of global symbol information from the executablefile.

The DEBUG Directive 39

DEBUG

3.13.7 The ONLYEXPORTS Debugging Option

The"ONLYEXPORTS" option (short form "ONL") restricts the generation of global symbol
information to exported symbols (symbols appearing in an "EXPORT" directive). If
"DEBUG WATCOM ONLYEXPORTS" is specified, Watcom Debugger globa symbol
information is generated only for exported symbols. If "DEBUG NOVELL
ONLYEXPORTS" is specified, NetWare 386 global symbol information is generated only for
exported symbols.

3.13.8 Using DEBUG Directives

Consider the following directive file.
debug wat com al |
file nodul el
debug watcom |i nes
file nodul e2, nodul e3

debug wat com
library mylib

It specifies that the following debugging information is to be generated in the executablefile.
1. globa symbol information for your program
2. line numbering, typing and local symbol information for the following object files:
nodul el. obj

3. line numbering information for the following object files:

nodul e2. obj
nodul e3. obj

Note that if the"DEBUG WATCOM" directive before the "LIBRARY" directiveis not
specified, line numbering information for al object modules extracted from the library
"mylib.lib" would be generated in the executabl e file provided the object modules extracted
from the library have line numbering information present.

40 The DEBUG Directive

DEBUG

Note: A "DEBUG WATCOM" directive with no option suppresses the processing of line
numbering, local symbol and typing information for all subsequent object modules.

Debugging information can use a significant amount of disk space. Asshown in the above
example, you can select only the class of debugging information you want and for those
modules you wish to debug. In thisway, the amount of debugging information in the
executable file is minimized and hence the amount of disk space used by the executablefileis
kept to a minimum.

Asyou can see from the above example, the position of the "DEBUG WATCOM" directiveis
important when describing the debugging information that is to appear in the executable file.

Note: If youwant al classes of debugging information for al files to appear in the
executable file you must specify "DEBUG WATCOM ALL" beforeany "FILE" and
"LIBRARY" directives.

3.13.9 Removing Debugging Information from an Executable File

A utility called WSTRIP has been provided which takes as input an executable file and
removes the debugging information placed in the executabl e file by the Watcom Linker. Note
that global symbol information generated using "DEBUG NOVELL" cannot be removed by
WSTRIP.

For more information on this utility, see the chapter entitled "The Watcom Strip Utility" in the
Watcom C/C++ Tools User’s Guide or Watcom FORTRAN 77 Tools User’s Guide.

The DEBUG Directive 41

DESCRIPTION (OS/2, Win16, Win32)

3.14 The DESCRIPTION Option
Formats: OS/2, Win16, Win32

The "DESCRIPTION" option inserts the specified text into the application or Dynamic Link
Library. Thisisuseful if you wish to embed copyright information into an application or
Dynamic Link Library. The format of the "DESCRIPTION" option (short form "DE") isas
follows.

OPTION DESCRIPTION 'string’

where description:
string is the sequence of characters to be embedded into the application or Dynamic
Link Library.

42 The DESCRIPTION Option

DISABLE

3.15 The DISABLE Directive

Formats: All
The"DISABLE" directiveis used to disable the display of linker messages.

The Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each
message has a 4-digit number associated with it. Fatal messages start with the digit 3, error
messages start with the digit 2, and warning messages start with the digit 1. It is possiblefor a
message to be issued as awarning or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of aproper executable file. However, all
warnings should eventually be corrected.

Note that the behaviour of the linker does not change when a message is disabled. For
example, if amessage that normally terminates the linker is disabled, the linker will till
terminate but the message describing the reason for the termination will not be displayed. For
this reason, you should only disable messages that are warnings.

The linker will ignore the severity of the message number. For example, some messages can
be displayed as errors or warnings. It isnot possible to disable the message when it isissued
asawarning and display the message when it isissued as an error. In general, do not specify
the severity of the message when specifying a message number.

The format of the "DISABLE" directive (short form "DISA") is as follows.

DISABLE msg_num{, msg_num}

The DISABLE Directive 43

DISABLE

where description:

msg_num isamessage number. Seethe chapter entitled "Watcom Linker Diagnostic
Messages' on page 213 for alist of messages and their corresponding numbers.

Thefollowing "DISABLE" directive will disable message 28 (an undefined symbol has been
referenced).

di sabl e 28

44 The DISABLE Directive

DOSSEG

3.16 The DOSSEG Option

Formats: All

The"DOSSEG" option tells the Watcom Linker to order segmentsin a special way. The
format of the "DOSSEG" option (short form "D") is as follows.

OPTION DOSSEG

When the "DOSSEG" option is specified, segments will be ordered in the following way.
1. all segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"
3. al segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

When using Watcom run-time libraries, it is not necessary to specify the "DOSSEG" option.
One of the object files in the Watcom run-time libraries contains a special record that specifies
the "DOSSEG" option.

If no "DOSSEG" option is specified, segments are ordered in the order they are encountered
by the Watcom Linker.

The DOSSEG Option 45

DOSSEG

When the "DOSSEG" option is specified, the Watcom Linker defines two specia variables.
_edat a defines the start of the "BSS" class of segmentsand _end defines the end of the
"BSS' class of segments. Y our program must not redefine these symbols.

46 The DOSSEG Option

ELIMINATE

3.17 The ELIMINATE Option

Formats: All

The"ELIMINATE" option can be used to enable dead code elimination. Dead code
elimination is a process the linker uses to remove unreferenced segments from the application.
The linker will only remove segments that contain code; unreferenced data segments will not
be removed.

The format of the "ELIMINATE" option (short form "EL") isas follows.

OPTION ELIMINATE

Linking C/C++ Applications
Typically, amodule of C/C++ code contains a number of functions. When this
moduleis compiled, all functionswill be placed in the same code segment. The
chances of each function in the module being unreferenced are remote and the
usefulness of the "ELIMINATE" option is greatly reduced.

In order to maximize the effect of the "ELIMINATE" option, the "zm" compiler
option isavailableto tell the Watcom C/C++ compiler to place each function in
its own code segment. This allows the linker to remove unreferenced functions
from modules that contain many functions.

Note, that if afunction isreferenced by data, asin ajump table, the linker will
not be able to eliminate the code for the function even if the data that references
it isunreferenced.

Linking FORTRAN 77 Applications
The Watcom FORTRAN 77 compiler always places each function and
subroutine in its own code segment, even if they are contained in the same
module. Therefore when linking with the "ELIMINATE" option the linker will
be able to eliminate code on a function/subroutine basis.

The ELIMINATE Option 47

ENDLINK

3.18 The ENDLINK Directive

Formats: All

The "ENDLINK" directiveis used to indicate the end of a new set of linker commands that
areto be processed after the current set of commands has been processed. The format of the
"ENDLINK" directive (short form "ENDL") is asfollows.

ENDLINK

The"STARTLINK" directive, described in "The STARTLINK Directive" on page 146, is
used to indicate the start of the set of commands.

48 The ENDLINK Directive

EXIT (NetWare)

3.19 The EXIT Option

Formats: NetWare

The format of the "EXIT" option (short form "EX") is as follows.

OPTION EXIT=symbol_name

where description:

symbol _name specifies the name of the procedure that is executed when an NLM is unloaded.
The default name of the exit procedureis”_Stop".

Note that the exit procedure cannot prevent the NLM from being unloaded. Once the exit

procedure has executed, the NLM will be unloaded. The "CHECK" option can be used to
specify acheck procedure that can prevent an NLM from being unloaded.

The EXIT Option 49

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

3.20 The EXPORT Directive
Formats: ELF, NetWare, OS/2, Win16, Win32

The "EXPORT" directiveis used to tell the Watcom Linker which symbols are available for
import by other executables.

3.20.1 EXPORT - 0S/2, Win16, Win32 only

The "EXPORT" directive can be used to define the names and attributes of functionsin
Dynamic Link Libraries that are to be exported. An"EXPORT" definition must be specified
for every Dynamic Link Library function that is to be made available externally.

Winl6: An"EXPORT" directiveisalso required for the "window function". This
function must be defined by all programs and is called by Windows to provide
information to the program. For example, the window function is called when a
window is created, destroyed or resized, when an item is selected from a menu,
or when ascroll bar isbeing clicked with a mouse.

The format of the "EXPORT" directive (short form "EXP") is asfollows.

EXPORT export{,export}
or
EXPORT =lbc file

OS2 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT] [iopl_bytes]

Winl6, Win32 only:
export ::= entry_name{.ordinal][=internal_name]
[PRIVATE] [RESIDENT]

where description:
entry_name isthe name to be used by other applicationsto call the function.

ordinal isan ordinal value for the function. If the ordinal number is specified, other
applications can reference the function by using this ordinal number.

50 The EXPORT Directive

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

internal_name is the actual name of the function and should only be specified if it differs

PRIVATE

RESIDENT

iopl_bytes

Ibc file

from the entry name.

(no short form) specifies that the function’s entry name should be included in
the DLL’ s export table, but not included in any import library that the linker
generates.

(short form "RES") specifies that the function’s entry name should be kept
resident in memory (i.e., added to the resident names table).

By default, the entry name is always made memory resident if an ordinal is not
specified (i.e, itisimplicitly RESIDENT). For 16-bit Windows, the limit on the
size of the resident namestable is 64K bytes. Memory resident entry names
allow the operating system to resolve calls more efficiently when the call is by
entry name rather than by ordinal.

If an ordinal is specified and RESIDENT is not specified, the entry name is
added to the non-resident namestable (i.e., it isimplicitly non-RESIDENT). If
both the ordinal and the RESIDENT keyword are specified, the symboal is placed
in the resident names table.

If you do not want an entry name to appear in either the resident or non-resident
names table, you can use the "ANONY MOUSEXPORT" directive described in
"The ANONYMOUSEXPORT Directive" on page 24.

(OS/2 only) isrequired for functions that execute with I/O privilege. iopl_bytes
specifies that total size of the function’s argumentsin bytes. When such a
function is executed, the specified number of bytesis copied from the caller’s
stack to the I/O-privileged function’s stack. The maximum number of bytes
allowed is 63.

isafile specification for the name of alibrarian command file. If no file
extension is specified, afile extension of "Ibc" isassumed. The linker will
process the librarian command file and look for commands to the librarian that
are used to create import library entries. These commands have the following
form.

++sym dl | _nane[.[al tsym . export _nane][.ordi nal]

The EXPORT Directive 51

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

where description:
sym is the name of a symbol in aDynamic Link Library.
dil_name isthe name of the Dynamic Link Library that defines sym

altsym isthe name of a symbol in a Dynamic Link Library. When
omitted, the default symbol nameis sym

export_name isthe name that an application that is linking to the Dynamic Link
Library usesto reference sym When omitted, the default export
nameissym

ordinal isthe ordinal value that can be used to identify syminstead of
using the name expor t _nane.

All other librarian commands will be ignored.
Notes:
1. By default, the Watcom C and C++ compilers append an underscore (') to all
function names. This should be considered when specifying entry _name and

internal_namein an "EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ' myfunc@’).

3. If the__export declspec modifier is used in the source code, it is the equivalent of
using the following linker directive:

EXPORT entry _nanme RESI DENT

3.20.2 EXPORT - ELF only

The "EXPORT" directive is used to tell the Watcom Linker which symbols are available for
import by other executables. The format of the "EXPORT" directive (short form "EXP") isas
follows.

52 The EXPORT Directive

EXPORT (ELF, NetWare, OS/2, Win16, Win32)

EXPORT entry_name{,entry_name}

where description:
entry_name isthe name of the exported symbol.
Notes:
1. By default, the Watcom C and C++ compilers append an underscore ('_’) to all
function names. This should be considered when specifying entry_namein an

"EXPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., export ' myfunc@’).

3.20.3 EXPORT - Netware only

The "EXPORT" directive is used to tell the Watcom Linker which symbols are available for
import by other NLMs. The format of the "EXPORT" directive (short form "EXP") isas
follows.

EXPORT entry_name{,entry_name}

where description:
entry_name isthe name of the exported symbol.
Notes:

1. If the name contains charactersthat are special to the linker then the name may be
placed inside apostrophes (e.g., export ' nmyfunc@’).

The EXPORT Directive 53

FILE

3.21 The FILE Directive

Formats: All

The"FILE" directive is used to specify the object files and library modules that the Watcom
Linker isto process. The format of the"FILE" directive (short form "F") is as follows.

FILE obj_spec{,obj_spec}

obj_spec ::= obj_file[(obj_module)]
| library file[(obj_module)]

where description:

obj_file isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" isassumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, ?). A file extension of "0" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

library file isafile specification for the name of alibrary file. Note that the file extension
of the library file (usually "lib") must be specified; otherwise an object file will
be assumed. When alibrary fileis specified, all object filesin the library are
included (whether required or not).

obj_module isthe name of an object module defined in an object or library file.

Consider the following example.

Example:
W ink systemny_os f \math\sin, nycos

The Watcom Linker isinstructed to process the following object files:

\ mat h\ si n. obj
nmycos. obj

The object file "mycos.obj" islocated in the current directory since no path was specified.

54 The FILE Directive

FILE

More than one "FILE" directive may be used. The following exampleis equivaent to the
preceding one.

Example:
wWink systemny os f \math\sin f mycos

Thus, other directives may be placed between lists of object files.

The"FILE" directive can aso specify object modules from alibrary file or object file.
Consider the following example.

Example:
wWink systemny_os f \math\math.|ib(sin)

The Watcom Linker isinstructed to process the object module "sin" contained in the library
file"math.lib" in the directory "\math".

In the following example, the Watcom Linker will process the object module "sin" contained
in the object file "math.obj" in the directory "\math".

Example:
W ink systemny_os f \nmath\math(sin)

In the following example, the Watcom Linker will include all object modules contained in the
library file "math.lib" in the directory "\math".

Example:
wWink systemny_os f \math\math.lib

The FILE Directive 55

FORMAT

3.22 The FORMAT Directive

Formats: All

The"FORMAT" directive is used to specify the format of the executable file that the Watcom
Linker isto generate. The format of the "FORMAT" directive (short form "FORM") is as
follows.

FORMAT form

form::= DOS[COM]
| WINDOWS [win_dIl] [MEMORY] [FONT]
| WINDOWS NT [TNT] [dIl_attrs]
| OS2 [0s2_type] [dIl_attrs| 0s2_attrs]
| PHARLAP [EXTENDED | REX | SEGMENTED]
| NOVELL [NLM |LAN | DSK | NAM] ’description’
| ONX [FLAT]
| ELF [DLL]

win_dll ::= DLL [INITGLOBAL | INITINSTANCE]

dll_attrs::= DLL [INITGLOBAL | INITINSTANCE]
[TERMINSTANCE | TERMGLOBAL]

0s2_type::= FLAT | LE | LX

0s2_attrs::= PM | PMCOMPATIBLE | FULLSCREEN
| PHYSDEVICE | VIRTDEVICE

where description:

DOS (short form "D") tells the Watcom Linker to generate a DOS "EXE" file.
The name of the executable file will have extension "exe". If "COM" is
specified, aDOS "COM" file will be generated in which case the name of the
executable file will have extension "com". Note that these default extensions
can be overridden by using the "NAME" directive to name the executable file.

Not all programs can be generated in the "COM" format. The following rules
must be followed.

56 The FORMAT Directive

FORMAT

WINDOWS

1. Theprogram must consist of only one physical segment. Thisimplies
that the size of the program (code and data) must be less than 64k.

2. Theprogram must not contain any segment relocation. A warning
message will be issued by the Watcom Linker each time a segment
relocation is encountered.

A DOS"COM" file cannot contain debugging information. 1f you wish to
debug aDOS "COM" file, you must use the"SYMPFILE" option to instruct the
Watcom Linker to place the debugging information in a separatefile.

For more information on DOS executable file formats, see the chapter entitled
"The DOS Executable File Format" on page 165.

tells the Watcom Linker to generate a Win16 (16-bit Windows) executable file.

The name of the executable file will have extension "exe". If "DLL" (short form
"DL") is specified, a Dynamic Link Library will be generated; the name of the
executable file will also have extension "exe". Note that these default extensions
can be overridden by using the "NAME" directive to name the executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause Windows to call
an initialization routine the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the"INITGLOBAL" optionis used with
"OPTION MANYAUTODATA", theinitialization code will be called once for
the first data segment allocated but not for subsequent allocations (thisis
generally not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause Windows to call
an initialization routine each time the Dynamic Link Library isused by a
process. The"INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, theinitialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

Specifying "MEMORY" (short form "MEM") indicates that the application will
run in standard or enhanced mode. If Windows 3.0 is running in standard and
enhanced mode, and "MEMORY" is not specified, awarning message will be
issued. The"MEMORY" specification was used in the transition from Windows
2.0to Windows 3.0. The"MEMORY" specification isignored in Windows 3.1
or later.

The FORMAT Directive 57

FORMAT

Specifying "FONT" (short form "FQO") indicates that the proportional -spaced
system font can be used. Otherwise, the old-style mono-spaced system font will
beused. The"FONT" specification was used in the transition from Windows
2.0to Windows 3.0. The"FONT" specification isignored in Windows 3.1 or
later.

For more information on Windows executable file formats, see the chapter
entitled "The Win16 Executable and DLL File Formats' on page 199.

WINDOWS NT tells the Watcom Linker to generate a Win32 executable file ("PE" format).

If "TNT" is specified, an executable for the Phar Lap TNT DOS extender is
created. A "PL" format (rather than "PE") executableis created so that the Phar
Lap TNT DOS extender will always run the application (including under
Windows NT).

If "DLL" (short form "DL") is specified, aDynamic Link Library will be
generated in which case the name of the executable file will have extension
"dIl". Note that these default extensions can be overridden by using the
"NAME" directive to name the executablefile.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library isloaded.

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library isreferenced by a
process.

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

It is also possible to specify whether the initialization routine isto be called at
DLL termination or not. Specifying"TERMGLOBAL" (short form "TERMG")
will cause the initialization routine to be called when the last instance of the
Dynamic Link Library isterminated. Specifying"TERMINSTANCE" (short
form "TERMI") will cause the initialization routine to be called each time an
instance of the Dynamic Link Library isterminated. Note that theinitialization
routine is passed an argument indicating whether it is being called during DLL
initialization or DLL termination. If "INITINSTANCE" isused and no
termination option is specified, "TERMINSTANCE" is assumed. If
"INITGLOBAL" is used and no termination option is specified,
"TERMGLOBAL" is assumed.

58 The FORMAT Directive

FORMAT

082

For more information on Windows NT executable file formats, see the chapter
entitled "The Win32 Executable and DLL File Formats' on page 207.

tellsthe Watcom Linker to generate an OS/2 executable file format.

The name of the executable file will have extension "exe". If "LE" is specified,
an early form of the OS/2 32-hit linear executable will be generated. This
executable file format is required by Tenberry Software’'s DOS/4G and
DOS/AGW DOS extenders.

In order to improve load time and minimize the size of the executable file, the
0S/2 32-bit linear executable file format was changed. If "LX" or "FLAT"
(short form "FL") is specified, the new form of the OS/2 32-bit linear executable
will be generated. This executable file format is required by the FlashTek DOS
extender and 32-bit OS/2 executables.

If "FLAT", "LX" or "LE" is not specified, an OS/2 16-bit executable will be
generated.

If "DLL" (short form "DL") is specified, aDynamic Link Library will be
generated in which case the name of the executable file will have extension
"dIl". Note that these default extensions can be overridden by using the
"NAME" directive to name the executable file.

Specifying "INITGLOBAL" (short form "INITG") will cause the initialization
routine to be called the first time the Dynamic Link Library isloaded. The
"INITGLOBAL" option should be used with "OPTION ONEAUTODATA" (the
default for Dynamic Link Libraries). If the"INITGLOBAL" option is used with
"OPTION MANYAUTODATA", theinitialization code will be called once for
the first data segment allocated but not for subsequent allocations (thisis
generaly not desirable behaviour and will likely cause a program fault).

Specifying "INITINSTANCE" (short form "INITI") will cause the initialization
routine to be called each time the Dynamic Link Library isreferenced by a
process. The"INITINSTANCE" option should be used with "OPTION
MANYAUTODATA" (the default for executable programs).

In either case, the initialization routine is defined by the start address. If neither
"INITGLOBAL" or "INITINSTANCE" is specified, "INITGLOBAL" is
assumed.

For OS/2 32-hit linear executable files, it is also possible to specify whether the

initialization routine isto be called at DLL termination or not. Specifying
"TERMGLOBAL" (short form "TERMG") will cause the initialization routine

The FORMAT Directive 59

FORMAT

PHARLAP

to be called when the last instance of the Dynamic Link Library isterminated.
Specifying "TERMINSTANCE" (short form "TERMI") will cause the
initialization routine to be called each time an instance of the Dynamic Link
Library isterminated. Note that the initialization routine is passed an argument
indicating whether it is being called during DLL initialization or DLL
termination. If "INITINSTANCE" is used and no termination option is
specified, "TERMINSTANCE" isassumed. If "INITGLOBAL" isused and no
termination option is specified, "TERMGLOBAL" is assumed.

If "PM" is specified, a Presentation Manager application will be created. The
application uses the API provided by the Presentation Manager and must be
executed in the Presentation Manager environment.

If "PMCOMPATIBLE" (short form "PMC") is specified, an application
compatible with Presentation Manager will be created. The application can run
inside the Presentation Manager or it can run in a separate screen group. An
application can be of thistypeif it uses the proper subset of OS/2 video,
keyboard, and mouse functions supported in the Presentation Manager
applications. Thisisthe default.

If "FULLSCREEN" (short form "FULL") is specified, an OS2 full screen
application will be created. The application will run in a separate screen group
from the Presentation Manager.

If "PHY SDEVICE" (short form "PHY S") is specified, the executable fileis
marked as a physical device driver.

If "VIRTDEVICE" (short form "VIRT") is specified, the executablefileis
marked as avirtual device driver.

For more information on OS/2 executable file formats, see the chapter entitled
"The OS/2 Executable and DLL File Formats' on page 181.

(short form "PHAR") tells the Watcom Linker to generate an executable file that
will run under Phar Lap’s 386|DOS-Extender.

There are 4 forms of executablefiles. simple, extended, relocatable and
segmented. If "EXTENDED" (short form "EXT") is specified, an extended
form of the executable file with file extension "exp" will be generated. If "REX"
is specified, arelocatable executable file with file extension "rex" will be
generated. If "SEGMENTED" (short form "SEG") is specified, a segmented
executable file with file extension "exp" will be generated. If neither
"EXTENDED", "REX" or "SEGMENTED" is specified, a simple executable file

60 The FORMAT Directive

FORMAT

NOVELL

with file extension "exp" will be generated. Note that the default file extensions
can be overridden by using the "NAME" directive to name the executablefile.

The simple form isfor flat model 386 applications. It isthe only format that can
be loaded by earlier versions of 386|DOS-Extender (earlier than 1.2).

The extended form is used for flat model applications that have been linked in a
way which requires a method of specifying more information for
386|DOS-Extender than possible with the simple form.

Therelocatable form is similar to the smple form. Unique to the relocatable
formis an offset relocation table. This allows the loader to load the program at
any location it chooses.

The segmented form is used for embedded system applications like Intel RMX.
These executables cannot be |oaded by 386|DOS-Extender.

A simple form of the executable fileis generated in all but the following cases.
1. "EXTENDED" is specified in the "FORMAT" directive.

2. The"RUNTIME" directiveis specified. Options specified by the
"RUNTIME" directive can only be specified in the extended form of
the executable file.

3. The"OFFSET" option is specified. The value specified in the
"OFFSET" option can only be specified in the extended form of the
executablefile.

4, "REX" isspecified inthe "FORMAT" directive. Inthiscase, the
relocatable form will be generated. Y ou must not specify the
"RUNTIME" directive or the "OFFSET" option when generating the
relocatable form.

5. "SEGMENTED" is specified in the "FORMAT" directive. Inthis
case, the segmented form will be generated.

For more information on Phar Lap executable file formats, see the chapter
entitled "The Phar Lap Executable File Format" on page 189.

(short form "NOV™") tells the Watcom Linker to generate a NetWare 386
executable file, more commonly called a NetWare Loadable Module (NLM).

The FORMAT Directive 61

FORMAT

QNX

ELF

NLMs are further classified according to their function. The executable file will
have afile extension that depends on the class of the NLM being generated. The
following describes the classification of NLMs.

LAN instructs the Watcom Linker to generate aLAN driver. A LAN
driver isadevicedriver for Local Area Network hardware. A file
extension of "lan" is used for the name of the executable file.

DSK instructs the Watcom Linker to generate adisk driver. A file
extension of "dsk" is used for the name of the executablefile.

NAM instructs the Watcom Linker to generate a file system name-space
support module. A file extension of "nam" is used for the name of
the executable file.

NLM instructs the Watcom Linker to generate a utility or server
application. Thisisthe default. A file extension of "nlm" is used
for the name of the executable file.

description isatextua description of the program being linked.

For more information on NetWare 386 executable file formats, see the chapter
entitled "The NetWare 386 Executable File Format" on page 175.

tellsthe Watcom Linker to generate a QNX executablefile.

If "FLAT" (short form "FL") is specified, a 32-bit flat executablefileis
generated.

Under QNX, no file extension is added to the executable file name.
Under other operating systems, the name of the executable file will have the
extension "gnx". Note that this default extension can be overridden by using the

"NAME" directive to name the executablefile.

For more information on QNX executable file formats, see the chapter entitled
"The QNX Executable File Format" on page 195.

tellsthe Watcom Linker to generate an ELF format executablefile.
ELF format DLLs can also be created.

For more information on ELF executable file formats, see the chapter entitled
"The ELF Executable File Format" on page 171.

62 The FORMAT Directive

FORMAT

If no "FORMAT" directive is specified, the executable file format will be selected for each of
the following host systems in the way described.

DOS If 16-bit object files are encountered, a 16-bit DOS executable will be created.
If 32-hit object files are encountered, a 32-bit DOS/4G executable will be
created.

0s/2 If 16-bit object files are encountered, a 16-bit OS/2 executable will be created.

If 32-bit object files are encountered, a 32-bit OS/2 executable will be created.

OQNX If 16-hit object files are encountered, a 16-bit QNX executable will be created.
If 32-hit object files are encountered, a 32-bit QNX executable will be created.

Windows NT If 16-bit object files are encountered, a 16-bit Windows executable will be
created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

Windows 95 If 16-bit object files are encountered, a 16-bit Windows executable will be

created. If 32-bit object files are encountered, a 32-bit Win32 executable will be
created.

The FORMAT Directive 63

HEAPSIZE (0S/2, QNX, Win16, Win32)

3.23 The HEAPSIZE Option
Formats: 0S/2, QNX, Winl16, Win32

The "HEAPSIZE" option specifies the size of the heap required by the application. The
format of the "HEAPSIZE" option (short form "H") is as follows.

OPTION HEAPSIZE=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the size of the heap. The default heap sizeis 0 bytes. The maximum value of nis
65536 (64K) for 16-bit applications and 4G for 32-bit applications which is the maximum size
of aphysical segment. Actualy, for aparticular application, the maximum value of nis 64K
or 4G less the size of group "DGROUP".

64 The HEAPSIZE Option

HELP (NetWare)

3.24 The HELP Option

Formats: NetWare

The"HELP" option specifies the file name of an internationalized help file whose language
corresponds to the message file bound to this NLM.

The format of the "HELP" option (short form "HE") is asfollows.

OPTION HELP=hdp file

where description:

help_file isthe name of the helpfile.

The HELP Option 65

IMPFILE (NetWare, 0S/2, Win16, Win32)

3.25 The IMPFILE Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPFILE" option requests the linker to produce a Watcom Library Manager command
file that can be used to create an import library that correspondsto the DLL that is being
generated. Thisoption isuseful in situations where the Watcom Linker cannot create an
import library file when you have specified the "IMPLIB" option (i.e., the linker failsto
launch Watcom Library Manager).

The format of the "IMPFILE" option (short form "IMPF") is as follows.

OPTION IMPFILE[=imp_file]

where description:

imp_file is afile specification for the name of the command file that can be used to create
theimport library file using the Watcom Library Manager. If no file extension
is specified, no file extension is assumed.

By default, no command fileis generated. Specifying this option causes the linker to generate
an import library command file. The import library command file contains alist of the entry
pointsin your DLL. When this command file is processed by the Watcom Library Manager,
an import library file will be produced.

If no file name is specified, the import library command file will have a default file extension
of "Ibc" and the same file name asthe DLL file. Note that the import library command file
will be created in the same directory asthe DLL file. The DLL file path and name can be
specified in the "NAME" directive.

Alternatively, alibrary command file path and name can be specified. The following directive
instructs the linker to generate aimport library command file and call it "mylib.Icf" regardiess
of the name of the executablefile.

option inpfile=nylib.Icf

Y ou can al'so specify a path and/or file extension when using the "IMPFILE=" form of the
"IMPFILE" option.

66 The IMPFILE Option

IMPLIB (NetWare, OS/2, Win16, Win32)

3.26 The IMPLIB Option
Formats: NetWare, 0S/2, Win16, Win32

The"IMPLIB" option requests the linker to produce an import library that corresponds to the
DLL that isbeing generated. The format of the "IMPLIB" option (short form "IMPL") isas
follows.

OPTION IMPLIB[=imp_lib]

where description:

imp_lib isafile specification for the name of the import library file. If no file extension
is specified, afile extension of "lib" is assumed.

By default, no library fileis generated. Specifying this option causes the Watcom Linker to
generate an import library file. Theimport library file contains alist of the entry pointsin
your DLL.

If no file name is specified, the import library file will have a default file extension of "lib"
and the same file name asthe DLL file. Notethat theimport library file will be created in the
same directory asthe DLL file. The DLL file path and name can be specified in the "NAME"
directive.

Alternatively, alibrary file path and name can be specified. The following directive instructs
the linker to generate alibrary file and call it "mylib.imp" regardless of the name of the
executablefile.

option inplib=nylib.inmp

Y ou can also specify apath and/or file extension when using the "IMPLIB=" form of the
"IMPLIB" option.

Note: At present, the linker spawns the Watcom Library Manager to create the import
library file.

The IMPLIB Option 67

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

3.27 The IMPORT Directive
Formats: ELF, NetWare, OS/2, Win16, Win32

The "IMPORT" directive is used to tell the Watcom Linker what symbols are defined
externally in other executables.

3.27.1 IMPORT - 0S/2, Win16, Win32 only

The"IMPORT" directive describes a function that belongs to a Dynamic Link Library. The
format of the "IMPORT" directive (short form "IMP") is asfollows.

IMPORT import{,import}

import ::= internal_name module_name[.entry_name | ordinal]

where description:

internal_name is the name the application used to call the function.

module_name is the name of the Dynamic Link Library. Note that this need not be the same
as the file name of the executable file containing the Dynamic Link Library.
This name corresponds to the name specified by the "MODNAME" option when
the Dynamic Link Library was created.

entry_name isthe actual name of the function as defined in the Dynamic Link Library.

ordinal isthe ordinal value of the function. The ordinal number is an alternate method
that can be used to reference afunction in aDynamic Link Library.

Notes:
1. By default, the Watcom C and C++ compilers append an underscore (' _') to all
function names. This should be considered when specifying internal_name and
entry_namein an"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

68 The IMPORT Directive

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

The preferred method to resolve references to Dynamic Link Librariesis through the use of
import libraries. See the sections entitled "Using a Dynamic Link Library" on page 185,
"Using a Dynamic Link Library" on page 204, or "Using a Dynamic Link Library" on page
211 for more information on import libraries.

3.27.2 IMPORT - ELF only

The "IMPORT" directiveis used to tell the Watcom Linker what symbols are defined
externally in other executables. The format of the "IMPORT" directive (short form "IMP") is
asfollows.

IMPORT external_name{,external_name}

where description:
external_name is the name of the external symbol.
Notes:
1. By default, the Watcom C and C++ compilers append an underscore (' _') to all
function names. This should be considered when specifying external_namein an

"IMPORT" directive.

2. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

3.27.3 IMPORT - Netware only

The"IMPORT" directive is used to tell the Watcom Linker what symbols are defined
externally in other NLMs. The format of the "IMPORT" directive (short form"IMP") isas
follows.

IMPORT external_name{,external_name}

The IMPORT Directive 69

IMPORT (ELF, NetWare, OS/2, Win16, Win32)

where description:
external_name is the name of the external symbol.

Notes:

1. If the name contains characters that are special to the linker then the name may be
placed inside apostrophes (e.g., i nport ' nmyfunc@’).

If an NLM contains external symbols, the NLMs that define the external symbols must be
loaded before the NLM that references the external symbolsis|oaded.

70 The IMPORT Directive

INCLUDE

3.28 The @ Directive

The"@" directive instructs the Watcom Linker to process directives from an aternate source.
The format of the"@" directiveisasfollows.

@directive var
or
@directive file

where description:

directive var isthe name of an environment variable. The directives specified by the value of
di rective_var will beprocessed.

directive_fileisafile specification for the name of alinker directivefile. A file extension of
"Ink" is assumed if no file extension is specified.

The environment variable approach to specifying linker directives allows you to specify
commonly used directives without having to specify them each time you invoke the Watcom
Linker. If the environment variable "wlink" is set asin the following example,

set W ink=debug watcom all option map, verbose library math
wink @fink

then each time the Watcom Linker isinvoked, full debugging information will be generated, a
verbose map file will be created, and the library file "math.lib" will be searched for undefined
references.

A linker directive file is useful, for example, when the linker input consists of alarge number
of object files and you do not want to type their names on the command line each time you
link your program. Note that alinker directive file can aso include other linker directive
files.

Let thefile "memos.Ink" be a directive file containing the following lines.

The @ Directive 71

INCLUDE

system nmy_os
name menos
file nmenos
file actions

file read
file msg
file pronpt
file memuyr

library \term o\screen
library \term o\keyboard

Win16 only: We must also use the "EXPORT" directive to define the window function. This
is done using the following directive.

export w ndow_function
Consider the following example.

Example:
W i nk @enos

The Watcom Linker isinstructed to process the contents of the directive file "memos.Ink".
The executable image file will be called "memos.exe”. The following object fileswill be
loaded from the current directory.

nmenos. obj
actions. obj
read. obj
nsg. obj
pronpt . obj
memgr . obj

If any unresolved symbol references remain after all object files have been processed, the
library files "screen.lib" and "keyboard.lib" in the directory "\termio" will be searched (in the
order listed).
Notes:
1. Inthe above example, we did not provide the file extension when the directivefile
was specified. The Watcom Linker assumes afile extension of "Ink" if noneis

present.

2. ltisnot necessary to list each object file and library with a separate directive. The
following linker directive fileis equivalent.

72 The @ Directive

INCLUDE

system ny_os

name menos

file menos, actions, read, nsg, pronpt, nermyr
[ibrary \term o\screen,\term o\keyboard

However, if you want to selectively specify what debugging information should be
included, thefirst style of directive file will be easier to use. Thisisillustrated in
the following sample directivefile.

system nmy_os

name menos

debug watcom |i nes
file menos

debug wat com al |
file actions

debug watcom | i nes

file read
file msg
file prompt
file nmemmygr

debug wat com
library \term o\screen
[ibrary \term o\ keyboard

Information for aparticular directive can span directivefiles. Thisisillustrated in
the following sample directive file.

system nmy_os

file menos, actions, read, nsg, pronpt, nemyr
file @bgfiles

library \termo\screen

library \term o\keyboard

The directivefile "dbgfiles.Ink" contains, for example, those object files that are
used for debugging purposes.

The @ Directive 73

INCREMENTAL (ELF, OS/2, PharLap, QNX, Win16, Win32)

3.29 The INCREMENTAL Option
Formats: ELF, OS/2, PharLap, QNX, Win16, Win32

The"INCREMENTAL" option can be used to enable incremental linking. Incremental
linking is a process whereby the linker attempts to modify the existing executable file by
changing only those portions for which new object files are provided.

The format of the "INCREMENTAL" option (short form "INC") isasfollows.

OPTION INCREMENTAL[=inc_file_ name]

where description:

inc_file_nameis afile specification for the name of the incremental information file. If no
file extension is specified, afile extension of "ilk" is assumed.

This option engages the incremental linking feature of the linker. This option must be one of
the first options encountered in the list of directives and options supplied to the linker. If the
option is presented too late, the linker will issue a diagnostic message.

By default, the incremental information file has the same name as the program except with an
"ilk" extension unless the "NAME" directive has not been seen yet. If thisisthe case then the
fileiscalled - _WLI NK. | LK.

Thelinker’ sincremental linking technique is very resistant to changesin the underlying object
files - there are very few cases where an incremental re-link is not possible. The options
"ELIMINATE" and "VFREMOVAL" cannot be used at the same time asincremental linking.

It is possible, over time, to accumulate unneeded functions in the executable by using
incremental linking. To guarantee an executable of minimum size, you can cause afull relink
by deleting the ".ilk" file or by not specifying the "INCREMENTAL" option.

Do not use a post processor like the Watcom Resource Compiler on the executable file since
thiswill damage the data structures maintained by the linker. Add resourcesto the executable
file using the "RESOURCE" option which is described in "The RESOURCE Option" on page
130.

74 The INCREMENTAL Option

INCREMENTAL (ELF, OS/2, PharLap, QNX, Win16, Win32)

Note: Only Dwarf debugging information is supported with incremental linking.

The INCREMENTAL Option 75

INTERNALRELOCS (0S/2)

3.30 The INTERNALRELOCS Option
Formats: OS/2

The"INTERNALRELOCS" option is used with LX format executables under 32-bit OS/2.
By default, OS/2 executables do not contain internal relocation information and OS/2
Dynamic Link Libraries do contain internal relocation information. This option causes the
Watcom Linker to include internal relocation information in OS/2 LX format executables.

The format of the "INTERNALRELOCS" option (short form "INT") isasfollows.

OPTION INTERNALRELOCS

76 The INTERNALRELOCS Option

LANGUAGE

3.31 The LANGUAGE Directive

Formats: All

The"LANGUAGE" directiveis used to specify the language in which strings in the Watcom
Linker directives are specified. The format of the "LANGUAGE" directive (short form
"LANG") isasfollows.

LANGUAGE lang

lang ::= JAPANESE | CHINESE | KOREAN

JAPANESE (short form "JA") specifies that strings are to be handled asif they contained
characters from the Japanese Double-Byte Character Set (DBCS).

CHINESE (short form "CH") specifies that strings are to be handled asiif they contained
characters from the Chinese Double-Byte Character Set (DBCS).

KOREAN (short form "KO") specifies that strings are to be handled as if they contained
characters from the Korean Double-Byte Character Set (DBCS).

The LANGUAGE Directive 77

LIBFILE

3.32 The LIBFILE Directive

Formats: All

The"LIBFILE" directiveis used to specify the object files that the Watcom Linker isto
process. Theformat of the "LIBFILE" directive (short form "LIBF") isasfollows.

LIBFILE obj_spec{,obj_spec}

obj_spec ::=obj_file| library file

where

obj_file

library file

description:

isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, ?). A file extension of "0" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

isafile specification for the name of alibrary file. Note that the file extension
of the library file (usualy "lib") must be specified; otherwise an object file will
be assumed. When alibrary fileis specified, all object filesin the library are
included (whether required or not).

The difference between the "LIBFILE" directive and the "FILE" directiveis as follows.

1. When searching for an object or library file specified in a"LIBFILE" directive, the
default directory will be searched first, followed by the paths specified in the
"LIBPATH" directive, and finally the paths specified in the "LIB" environment
variable. Notethat if the object or library file name contains a path, only the
specified path will be searched.

2. Object or library file names specified in a"LIBFILE" directive will not be used to
create the name of the executable file when no "NAME" directive is specified.

Essentially, object files that appear in "LIBFILE" directives are viewed as components of a
library that have not been explicitly placed in alibrary file.

Consider the following linker directivefile.

78 The LIBFILE Directive

LIBFILE

i bpath \libs
libfile nystart
path \objs

file filel, file2

The Watcom Linker isinstructed to process the following object files:
\libs\nystart. obj
\objs\filel. obj
\objs\file2. obj

Note that the executable file will have file name "filel" and not "mystart".

The LIBFILE Directive 79

LIBPATH

3.33 The LIBPATH Directive

Formats: All

The"LIBPATH" directiveis used to specify the directories that are to be searched for library
files appearing in subsequent "LIBRARY™" directives and object files appearing in subsequent
"LIBFILE" directives. Theformat of the"LIBPATH" directive (short form "LIBP") isas
follows.

LIBPATH [path_name{;path_name}]

where description:
path_name isapath name.

Consider adirective file containing the following linker directives.

file test

i bpath \'math
library trig
libfile newsin

First, the Watcom Linker will process the object file "test.obj" from the default directory. The
object file "newsin.obj" will then be processed, searching the default directory first. If
"newsin.obj" isnot in the default directory, the "\math" directory will be searched. If any
unresolved references remain after processing the object files, the library file "trig.lib" will be
searched. If thefile "trig.lib" does not exist in the default directory, the "\math" directory will
be searched.

Itisalso possible to specify alist of pathsina"LIBPATH" directive. Consider the following
example.

i bpath \ newmat h;\ math
library trig

When processing undefined references, the Watcom Linker will attempt to process the library
file"trig.lib" in the default directory. If "trig.lib" does not exist in the default directory, the
"\newmath" directory will be searched. If "trig.lib" does not exist in the "\newmath"
directory, the "\math" directory will be searched.

80 The LIBPATH Directive

LIBPATH

If the name of alibrary file appearing in a"LIBRARY" directive or the the name of an object
file appearing ina"LIBFILE" directive contains a path specification, only the specified path

will be searched.

Note that

i bpat h pathl
i bpat h pat h2

is equivalent to the following.

| i bpat h pat h2; pat hl

The LIBPATH Directive

81

LIBRARY

3.34 The LIBRARY Directive

Formats: All

The"LIBRARY" directiveis used to specify thelibrary files to be searched when unresolved
symbols remain after processing all specified input object files. The format of the
"LIBRARY" directive (short form "L") is asfollows.

LIBRARY library file{,library file}

where description:

library file isafile specification for the name of alibrary file. If no file extensionis
specified, afile extension of "lib" is assumed.

Consider the following example.

Example:
Wink systemny_os file trig lib \math\trig, \cnplx\trig

The Watcom Linker isinstructed to process the following object file:
trig. obj

If any unresolved symbol references remain after all object files have been processed, the
following library fileswill be searched:

\math\trig.lib
\cmpl x\trig.lib

More than one"LIBRARY" directive may be used. The following exampleis equivalent to
the preceding one.

82 The LIBRARY Directive

LIBRARY

Example:

wWink systemny_os f trig lib \math\trig lib \cnplx\trig

Thus other directives may be placed between lists of library files.

3.34.1 Searching for Libraries Specified in Environment Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for
library files. The"LIB" environment variable can be set using the "set" command as follows:

set

[ib=\graphics\lib;\utility

Consider the following "LIBRARY" directive and the above definition of the"LIB"
environment variable.

[ibrary \nmylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Watcom Linker will resolve these references by searching the following librariesin the
specified order.

AwdE

Notes:

the library file "\mylibs\util lib"

thelibrary file "graph.lib" in the current directory
the library file "\graphics\lib\graph.lib"

the library file "\utility\graph.lib"

If alibrary file specified in a"LIBRARY" directive contains an absolute path
specification, the Watcom Linker will not search any of the paths specified in the
"LIB" environment string for the library file. Under QNX, an absolute path
specification is one that beginsthe "/" character. Under all other operating systems,
an absolute path specification is one that begins with a drive specification or the "\"
character.

Once alibrary file has been found, no further elements of the "LIB" environment
variable are searched for other libraries of the same name. That is, if thelibrary file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

The LIBRARY Directive 83

LIBRARY

3.34.2 Converting Libraries Created using Phar Lap 386|LIB

Phar Lap’slibrarian, 386|L1B, creates libraries whose dictionary is a different format from the
one used by other librarians. For this reason, linking an application using the Watcom Linker
with libraries created using 386|LIB will not work. Library files created using 386|LI1B must
be converted to the form recognized by the Watcom Linker. Thisisachieved by issuing the
following WLIB command.

wWib newib +pharlib.lib

The library file "pharlib.lib" isalibrary created using 386|LIB. Thelibrary file "newlib.lib"
will be created so that the Watcom Linker can now processit.

84 The LIBRARY Directive

LINEARRELOCS (QNX)

3.35 The LINEARRELOCS Option
Formats: QNX

The"LINEARRELOCS" option instructs the linker to generate offset fixups in addition to the
normal segment fixups. The offset fixups alow the system to move pieces of code and data
that were loaded at a particular offset within a segment to another offset within the same

segment.

The format of the "LINEARRELOCS" option (short form "LI") is as follows.

OPTION LINEARRELOCS

The LINEARRELOCS Option 85

LONGLIVED (QNX)

3.36 The LONGLIVED Option
Formats: QNX

The"LONGLIVED" option specifies that the application being linked will reside in memory,
or be active, for along period of time (e.g., background tasks). The memory manager,
knowing an application is"LONGLIVED", allocates memory for the application so asto
reduce fragmentation.

The format of the "LONGLIVED" option (short form "LO") is asfollows.

OPTION LONGLIVED

86 The LONGLIVED Option

MANGLEDNAMES

3.37 The MANGLEDNAMES Option

Formats: All

The"MANGLEDNAMES' option should only be used if you are developing a Watcom C++
application. Due to the nature of C++, the Watcom C++ compiler generates mangled names
for symbols. A mangled name for a symbol includes the following.

1. symbol name
2. scoping information
3. typing information

Thisinformation is stored in a cryptic form with the symbol. When the linker encounters a
mangled name in an object file, it formats the above information and produces this namein
the map file.

If you would like the linker to produce the mangled name as it appeared in the object file,
specify the "MANGLEDNAMES" option.

The format of the "MANGLEDNAMES" option (short form "MANG") isasfollows.

OPTION MANGLEDNAMES

The MANGLEDNAMES Option 87

MANYAUTODATA (0S/2, Win16)

3.38 The MANYAUTODATA Option
Formats: OS/2, Winl6

The"MANYAUTODATA" option specifies that a copy of the automatic data segment
(default data segment defined by the group "DGROUP"), for the program module or Dynamic
Link Library (DLL) being created, is made for each instance. The format of the
"MANYAUTODATA" option (short form "MANY") isas follows.

OPTION MANYAUTODATA

The default for a program moduleis"MANYAUTODATA" and for a Dynamic Link Library
is"ONEAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 56 for
information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

88 The MANYAUTODATA Option

MAP

3.39 The MAP Option

Formats: All

The"MAP" option controls the generation of amap file. The format of the "MAP" option
(short form "M") is as follows.

OPTION MAP[=map_file]

where description:

map_file isafile specification for the name of the map file. If no file extensionis
specified, afile extension of "map" is assumed.

By default, no map file is generated. Specifying this option causes the Watcom Linker to
generate amap file. The map fileissimply amemory map of your program. That is, it
specifies the relative location of all global symbolsin your program. The map file also
contains the size of your program.

If no file name is specified, the map file will have a default file extension of "map" and the
same file name as the executable file. Note that the map file will be created in the current
directory even if the executabl e file name specified in the "NAME" directive contains a path
specification.

Alternatively, afile name can be specified. The following directive instructs the linker to
generate amap file and call it "myprog.map" regardless of the name of the executablefile.

opti on map=mypr og

Y ou can also specify a path and/or file extension when using the "MAP=" form of the "MAP"
option.

The MAP Option 89

MAXDATA (PharLap)

3.40 The MAXDATA Option

Formats: PharlLap

The format of the "MAXDATA" option (short form "MAXD") is as follows.

OPTION MAXDATA=N

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If k is specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the maximum number of bytes, in addition to the memory required by executable
image, that may be allocated by 386|DOS-Extender at the end of the loaded executable image.
No more than n bytes will be allocated.

If the"MAXDATA" optionis not specified, a default value of hexadecimal ffffffff is

assumed. This means that 386|DOS-Extender will allocate al available memory to the
program at load time.

90 The MAXDATA Option

MAXERRORS

3.41 The MAXERRORS Option

Formats: All

The "MAXERRORS" option can be used to set alimit on the number of error messages
generated by the linker. Note that this does not include warning messages. When thislimit is
reached, the linker will issue afatal error and terminate.

The format of the "MAXERRORS' option (short form "MAXE") isas follows.

OPTION MAXERRORS=N

where description:

n is the maximum number of error messages issued by the linker.

The MAXERRORS Option 91

MESSAGES (NetWare)

3.42 The MESSAGES Option

Formats: NetWare

The "MESSAGES" option specifies the file name of an internationalized message file that
contains the default messages for the NLM. Thisis the name of the default message file to
load for NLMs that are enabled. Enabling allows the same NLM to display messagesin
different languages by switching message files.

The format of the "MESSAGES" option (short form "MES") is as follows.

OPTION MESSAGES=mgg _file

where description:

msg_file is the name of the message file.

92 The MESSAGES Option

MINDATA (PharLap)

3.43 The MINDATA Option

Formats: PharlLap

The format of the "MINDATA" option (short form "MIND") is as follows.

OPTION MINDATA=N

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If k is specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n specifies the minimum number of bytes, in addition to the memory required by executable
image, that must be allocated by 386|DOS-Extender at the end of the loaded executable
image. If n bytes are not available, the program will not be executed.

If the"MINDATA" option is not specified, a default value of zero is assumed. This means

that 386|DOS-Extender will load the program as long as there is enough memory for the load
image; no extramemory is required.

The MINDATA Option 93

MODNAME (OS/2, Win16, Win32)

3.44 The MODNAME Option
Formats: OS/2, Win16, Win32

The"MODNAME" option specifies a name to be given to the module being created. The
format of the "MODNAME" option (short form "MODN?") is as follows.

OPTION MODNAME=module_name

where description:

module_nameisthe name of a Dynamic Link Library.

Once a module has been loaded (whether it be a program module or a Dynamic Link Library),
mod_name is the name of the module known to the operating system. If the "MODNAME"

option is not used to specify a module name, the default module name is the name of the
executable file without the file extension.

94 The MODNAME Option

MODFILE

3.45 The MODFILE Directive

Formats: All

The"MODFILE" directive instructs the linker that only the specified object files have
changed. The format of the "MODFILE" directive (short form "MODF") is as follows.

MODFILE obj_file{,0bj_file}

where description:

obj_file isafile specification for the name of an object file. If nofile extensionis
specified, afile extension of "obj" is assumed if you are running a DOS, OS/2 or
Windows-hosted version of the Watcom Linker. Also, if you are running a
DOS, OS2 or Windows-hosted version of the Watcom Linker, the object file
specification can contain wild cards (*, 7). A file extension of "0" is assumed if
you are running a QNX-hosted version of the Watcom Linker.

This directiveis used only in concert with incremental linking. This directive tells the linker

that only the specified object files have changed. When this option is specified, the linker will
not check the dates on any of the object files or libraries when incrementally linking.

The MODFILE Directive 95

MODTRACE

3.46 The MODTRACE Directive

Formats: All

The"MODTRACE" directive instructs the Watcom Linker to print alist of all modules that
reference the symbols defined in the specified modules. The format of the "MODTRACE"
directive (short form "MODT") is as follows.

MODTRACE module_name{,module_name}

where description:
module_name is the name of an object module defined in an object or library file.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny_os op map file test lib math nodt trig

If the module "trig" defines the symbols"sin" and "cos', the Watcom Linker will list, in the
map file, al modules that reference the symbols"sin" and "cos".

96 The MODTRACE Directive

MODULE (ELF, NetWare)

3.47 The MODULE Directive
Formats: ELF, NetWare

The"MODULE" directive is used to specify the DLLs or NLMsto be loaded before this
executable isloaded. The format of the "MODULE" directive (short form "MODU") isas
follows.

MODULE module_name{,module_name}

where description:

module_nameisthe file name of aDLL or NLM.

WARNING! Versions 3.0 and 3.1 of the NetWare 386 operating system do not support
the automatic loading of modules specified in the "MODULE" directive. You must load
them manually.

The MODULE Directive 97

MULTILOAD (NetWare)

3.48 The MULTILOAD Option

Formats: NetWare

The"MULTILOAD" option specifies that the module can be loaded more than once by a
"load" command. The format of the "MULTILOAD" option (short form "MULTIL") isas
follows.

OPTION MULTILOAD

If the"MULTILOAD" option is not specified, it will not be possible to load the module more
than once using the "load" command.

98 The MULTILOAD Option

NAME

3.49 The NAME Directive

Formats: All

The"NAME" directive is used to provide a name for the executable file generated by the
Watcom Linker. The format of the "NAME" directive (short form "N") is as follows.

NAME exe file
where description:
exe file isafile specification for the name of the executable file. Under QNX, no file

extension is appended. For all other operating systems, afile extension suitable
for the current executable file format is appended if no file extension is
specified.

Consider the following example.

Example:
W ink systemny_os nane nyprog file test, test2, test3

Thelinker isinstructed to generate an executable file called "myprog.exe" if you are running a
DOS, OS2 or Windows-hosted version of the linker. If you are running a QNX-hosted
version of the linker, an executable file called "myprog" will be generated.

Notes:

1. Nofile extension was given when the executable file name was specified. The
linker assumes a file extension that depends on the format of the executable file
being generated. If you are running a QN X-hosted version of the linker, no file
extension will be assumed. The section entitled "The FORMAT Directive" on page
56 describesthe "FORMAT" directive and how the file extension is chosen for
each executable file format.

2. If no"NAME" directiveis present, the executable file will have the file name of the
first object file processed by the linker. If the first object file processed is called
"test.obj" and no "NAME" directive is specified, an executable file called "test.exe"
will be generated if you are running a DOS or OS/2-hosted version of the linker. 1f
you are running a QNX-hosted version of the linker, an executable file called "test"
will be generated.

The NAME Directive 99

NAMELEN

3.50 The NAMELEN Option

Formats: All

The "NAMELEN" option tells the Watcom Linker that all symbols must be uniquely
identified in the number of characters specified or less. If any symbol fails to satisfy this
condition, awarning message will be issued. The warning message will state that a symbol
has been defined more than once.

The format of the "NAMELEN" option (short form "NAMEL") is asfollows.

OPTION NAMELEN=n

where description:
n represents avalue. The complete form of n isthe following.
[0x] d{d}[k| m
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
Some computer systems, for example, require that al global symbols be uniquely identified in

8 characters. By specifying an appropriate value for the "NAMELEN" option, you can ease
the task of porting your application to other computer systems.

100 The NAMELEN Option

NEWFILES (0S/2)

3.51 The NEWFILES Option
Formats: OS/2

The "NEWFILES" option specifies that the application uses the high-performance file system.
Thisoption is applicable to 16-bit OS/2 applications only. The format of the "NEWFILES"
option (short form "NEWF") is as follows.

OPTION NEWFILES

The NEWFILES Option 101

NEWSEGMENT (DOS, 0S/2, QNX, Win16)

3.52 The NEWSEGMENT Directive
Formats: DOS, 0S/2, QNX, Win16

Thisdirectiveisintended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical code segments into physical segments. By default, these
segments are 64K bytesin size. However, the "PACKCODE" option can be used to specify a
maximum size for all physical segments that is smaller than 64K bytes.

The "NEWSEGMENT" directive provides an aternate method of grouping code segments
into physical segments. By placing this directive after a sequence of "FILE" directives, all
code segments appearing in object modules specified by the sequence of "FILE" directives
will be packed into aphysical segment. Note that the size of a physical segment may vary in
size. Theformat of the "NEWSEGMENT" directive (short form "NEW") is as follows.

NEWSEGMENT

Consider the following example.

file filel, file2, file3

newsegment
file file4d
file fileb

Code segments from filel, file2 and file3 will be grouped into one physical segment. Code
segments from file4 and fileb will be grouped into another physical segment.

Note that code segments extracted from library files will be grouped into physical segments as

well. The size of these physical segmentsis determined by the "PACKCODE" option and is
64k by default.

102 The NEWSEGMENT Directive

NLMFLAGS (NetWare)

3.53 The NLMFLAGS Option

Formats: NetWare

The"NLMFLAGS' option is used to set bitsin the flags field of the header of the Netware
executablefile. Theformat of the "NLMFLAGS" option (short form "NLMF") is as follows.

OPTION NLMFLAGS=some_value

where description:

some value isan integer valuethat is OR' ed into the flags field of the header of the Netware
executable.

The NLMFLAGS Option 103

NOAUTODATA (0S/2, Win16)

3.54 The NOAUTODATA Option
Formats: OS/2, Winl6

The"NOAUTODATA" option specifies that no automatic data segment (default data segment
defined by the group "DGROUP"), exists for the program module or Dynamic Link Library
being created. This option appliesto 16-bit applications only. The format of the
"NOAUTODATA" option (short form "NOA") isas follows.

OPTION NOAUTODATA

104 The NOAUTODATA Option

NODEFAULTLIBS

3.55 The NODEFAULTLIBS Option

Formats: All

Specia object module records that specify default libraries are placed in object files generated
by Watcom compilers. These libraries reflect the memory and floating-point model that a
source file was compiled for and are automatically searched by the Watcom Linker when
unresolved symbols are detected. These libraries can exist in the current directory, in one of
the paths specified in "LIBPATH" directives, or in one of the paths specified inthe L1B
environment variable.

Note that al library files that appear in a"LIBRARY" directive are searched before default
libraries. The"NODEFAULTLIBS' option instructs the Watcom Linker to ignore default
libraries. That is, only libraries appearing in a"LIBRARY" directive are searched.

The format of the "NODEFAULTLIBS" option (short form "NOD") is as follows.

OPTION NODEFAULTLIBS

The NODEFAULTLIBS Option 105

NORELOCS (QNX, Win32)

3.56 The NORELOCS Option
Formats: QNX, Win32

The "NORELOCS" option specifies that no relocation information is to be written to the
executable file. When the "NORELOCS" option is specified, the executable file can only be
run in protected mode and will not runin real mode. In real mode, the rel ocation information
isrequired; in protected mode, the relocation information is not required unless your
application isrunning at privilege level 0.

The format of the "NORELOCS" option (short form "NOR") is as follows.

OPTION NORELOCS

where description:

NORELOCS tells the Watcom Linker not to generate relocation information.

106 The NORELOCS Option

NOSTDCALL (Win32)

3.57 The NOSTDCALL Option
Formats: Win32

The"NOSTDCALL" option specifies that the characters unique to the __stdcall calling
convention be trimmed from all of the symbols that are exported from the DLL being created.
The format of the "NOSTDCALL" option (short form "NOSTDC") is as follows.

OPTION NOSTDCALL

Considering the following declarations.

Example:
short PASCAL __export Functionl(short varl,
| ong varl ong,
short var2);

short PASCAL __export Function2(|ong varlong,
short var2);

Under ordinary circumstances, these __ stdcall symbols are mappedto " Functionl@12" and
" Function2@8" respectively. The"@12" and " @8" reflect the number of bytesin the
argument list (short is passed asint). When the "NOSTDCALL" option is specified, these
symbols are stripped of the" " and "@xx" adornments. Thus they are exported from the DLL
as "Functionl1" and "Function2".

This option makes it easier to access functions exported from DLLSs, especially when using
other software languages such as FORTRAN which do not add on the __stdcall adornments.

Note: Usethe"IMPLIB" option to create an import library for the DLL which can be useg
with software languages that add onthe __stdcall adornments.

The NOSTDCALL Option 107

OBJALIGN (Win32)

3.58 The OBJALIGN Option
Formats: Win32

The"OBJALIGN" option specifies the alignment for objects in the executable file. The
format of the "OBJALIGN" option (short form "OBJA") is asfollows.

OPTION OBJALIGN=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

n must be avalue that is a power of 2 and is between 512 bytes and 256
megabytesinclusive. The default is 64k.

108 The OBJALIGN Option

OLDLIBRARY (0S/2, Win16, Win32)

3.59 The OLDLIBRARY Option
Formats: OS/2, Win16, Win32

The"OLDLIBRARY" option is used to preserve the export ordinals for successive versions of
aDynamic Link Library. This ensuresthat any application that references functionsin a
Dynamic Link Library by ordinal will continue to execute correctly. The format of the
"OLDLIBRARY" option (short form "OLD") isas follows.

OPTION OLDLIBRARY=dIl_name

where description:

dil_name isafile specification for the name of a Dynamic Link Library. If no file
extension is specified, afile extension of "DLL" is assumed.

Only the current directory or a specified directory will be searched for Dynamic Link
Libraries specified in the "OLDLIBRARY" option.

The OLDLIBRARY Option 109

OFFSET (OS/2, PharLap, QNX, Win32)

3.60 The OFFSET Option
Formats: OS/2, PharLap, QNX, Win32

For OS/2 and Win32 applications, the "OFFSET" option specifies the preferred base linear
address at which the executable or DLL will be loaded.

For 32-bit PharLap and QNX applications, the "OFFSET" option specifies the offset in the
program’s segment in which the first byte of code or datais loaded.

3.60.1 OFFSET - 0S/2, Win32 only

The "OFFSET" option specifies the preferred base linear address at which the executable or
DLL will beloaded. The Watcom Linker will relocate the application for the specified base
linear address so that when it is|oaded by the operating system, no relocation will be required.
This decreases the load time of the application.

If the operating system is unable to load the application at the specified base linear address, it
will load it at a different location which will increase the load time since a rel ocation phase
must be performed.

The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

The"OFFSET" option is used to specify the base linear address (in bytes) at which the
program is loaded and must be a multiple of 64K. The linker will round the value up to a
multiple of 64K if it isnot already a multiple of 64K. The default base linear addressis 64K
for OS2 executables and 4096K for Win32 executables.

110 The OFFSET Option

OFFSET (0S/2, PharLap, QNX, Win32)

This option is most useful for improving the load time of DLLS, especially for an application
that uses multiple DLLs.

3.60.2 OFFSET - PharLap only

The "OFFSET" option specifies the offset in the program’ s segment in which the first byte of
code or dataisloaded. The format of the "OFFSET" option (short form "OFF") is as follows.

OPTION OFFSET=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Watcom Linker will round the value up to amultiple of 4K if it is not already a multiple
of 4K.

It is possible to detect NULL pointer references by linking the program at an offset whichisa
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option of fset =4k

When the program is loaded by 386|DOS-Extender, the pages skipped by the "OFFSET"

option are not mapped. Any reference to an unmapped area (such asaNULL pointer) will
cause a page fault preventing the NULL reference from corrupting the program.

3.60.3 OFFSET - QNX only

The"OFFSET" option specifies the offset in the program’s segment in which the first byte of
code or dataisloaded. This option does not apply to 16-bit QNX applications. The format of
the "OFFSET" option (short form "OFF") is as follows.

The OFFSET Option 111

OFFSET (OS/2, PharLap, QNX, Win32)

OPTION OFFSET=n

where description:

n represents avalue. The complete form of n isthe following.
[Ox] d{d}[k| m

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.

n specifies the offset (in bytes) at which the program is loaded and must be a multiple of 4K.
The Watcom Linker will round the value up to amultiple of 4K if it is not already a multiple
of 4K. The following describes a use of the "OFFSET" option.

It is possible to detect NULL pointer references by linking the program at an offset whichisa
multiple of 4K. Usually an offset of 4K is sufficient.

Example:
option of fset =4k

When the program is loaded, the pages skipped by the "OFFSET" option are not mapped.

Any reference to an unmapped area (such asaNULL pointer) will cause a page fault
preventing the NULL reference from corrupting the program.

112 The OFFSET Option

ONEAUTODATA (0S/2, Win16)

3.61 The ONEAUTODATA Option
Formats: OS/2, Winl6

The"ONEAUTODATA" option specifies that the automatic data segment (default data
segment defined by the group "DGROUP"), for the program module or Dynamic Link Library
(DLL) being created, will be shared by all instances. The format of the "ONEAUTODATA"
option (short form "ONE") is as follows.

OPTION ONEAUTODATA

The default for aDynamic Link Library is"ONEAUTODATA" and for a program moduleis
"MANYAUTODATA". If you do not want the data area of a DLL to be shared across
multiple applications, then you should specify "OPTION MANYAUTODATA".

Win16: Note, however, that this attribute is not supported by Windows 3.x for 16-bit
DLLs.

Y ou should also see the related section entitled "The FORMAT Directive" on page 56 for

information on the "INITINSTANCE", "TERMINSTANCE", "INITGLOBAL", and
"TERMGLOBAL" DLL attributes.

The ONEAUTODATA Option 113

OPTION

3.62 The OPTION Directive

Formats: All

The"OPTION" directiveis used to specify options to the Watcom Linker. The format of the
"OPTION" directive (short form "OP") is as follows.

OPTION option{,option}

where description:
option isany of the linker options available for the executable format that is being
generated.

114 The OPTION Directive

OPTLIB

3.63 The OPTLIB Directive

Formats: All

The"OPTLIB" directiveis used to specify the library filesto be searched when unresolved
symbols remain after processing all specified input object files. The format of the "OPTLIB"
directive (no short form) is as follows.

OPTLIB library file{ library_file}

where description:

library file isafile specification for the name of alibrary file. If no file extensionis
specified, afile extension of "lib" is assumed.

This directiveis similar to the "LIBRARY" directive except that the linker will not issue a
warning message if the library file cannot be found.

Consider the following example.

Example:
Wink systemny_os file trig optlib \nmath\trig, \cnplx\trig

The Watcom Linker isinstructed to process the following object file:
trig.obj

If any unresolved symbol references remain after all object files have been processed, the
following library files will be searched:

\math\trig.lib
\cmpl x\trig.lib

More than one "OPTLIB" directive may be used. The following exampleisequivalent to the
preceding one.

The OPTLIB Directive 115

OPTLIB

Example:

Wink systemny_os f trig optlib \nmath\trig optlib
\crmpl x\trig

Thus other directives may be placed between lists of library files.

3.63.1 Searching for Optional Libraries Specified in Environment

Variables

The"LIB" environment variable can be used to specify alist of paths that will be searched for
library files. The"LIB" environment variable can be set using the "set" command as follows:

set

li b=\graphics\lib;\utility

Consider the following "OPTLIB" directive and the above definition of the "LIB"
environment variable.

optlib \mylibs\util, graph

If undefined symbols remain after processing all object files specified in all "FILE" directives,
the Watcom Linker will resolve these references by searching the following librariesin the

specified order.
1. thelibrary file "\mylibs\util.lib"
2. thelibrary file"graph.lib" in the current directory
3. thelibrary file "\graphics\lib\graph.lib"
4. thelibrary file "\utility\graph.lib"
Notes:
1. If alibrary file specified in a"OPTLIB" directive contains an absolute path
specification, the Watcom Linker will not search any of the paths specified in the
"LIB" environment string for the library file. On QNX-hosted systems, an absolute
path specification is one that beginsthe "/" character. On all other hosts, an
absol ute path specification is one that begins with a drive specification or the "\"
character.
2. Oncealibrary file has been found, no further elements of the "LIB" environment

variable are searched for other libraries of the same name. That is, if thelibrary file
"\graphics\lib\graph.lib" exists, the library file "\utility\graph.lib" will not be
searched even though unresolved references may remain.

116 The OPTLIB Directive

OSDOMAIN (NetWare)

3.64 The OSDOMAIN Option

Formats: NetWare

The"OSDOMAIN" option is used when the application isto run in the operating system
domain (ring 0).

The format of the "OSDOMAIN" option (short form "OSD") is as follows.

OPTION OSDOMAIN

The OSDOMAIN Option 117

PSEUDOPREEMPTION (NetWare)

3.65 The PSEUDOPREEMPTION Option

Formats: NetWare

The "PSEUDOPREEMPTION" option specifies that an additional set of system callswill
yield control to other processes. Multitasking in the NetWare 386 operating system is
non-preemptive. That is, a process must give up control in order for other processes to
execute. Using the "PSEUDOPREEM PTION" option increases the probability that all
processes are given an equal amount of CPU time.

The format of the "PSEUDOPREEMPTION" option (short form "PS') isas follows.

OPTION PSEUDOPREEMPTION

118 The PSEUDOPREEMPTION Option

OSNAME

3.66 The OSNAME Option

Formats: All

The"OSNAME" option can be used to set the name of the target operating system of the
executable file generated by the linker. The format of the"OSNAME" option (short form
"OSN") isasfollows.

OPTION OSNAME="string’

where description:
string isany sequence of characters.

Theinformation specified by the "OSNAME" option will be displayed in the creating a ?
executable message. Thisisthelast line of output produced by the linker, provided the
"QUIET" option is not specified. Consider the following example.

opti on osname=" Super CS
The last line of output produced by the linker will be asfollows.

creating a SuperOS executabl e

Some executable formats have a stub executable file that is run under 16-bit DOS. The
message displayed by the default stub executable file will be modified when the "OSNAME"
option isused. The default stub executable displays the following message:

0s/2: this is an OS/ 2 executabl e
Win16: this is a Wndows execut abl e
Win32: this is a Wndows NT execut abl e

If the"OSNAME" option used in the previous example was specified, the default stub
executable would generate the following message.

this is a SuperOS executabl e

The OSNAME Option 119

PACKCODE (DOS, 0S/2, QNX, Win16)

3.67 The PACKCODE Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical code segments into physical segments. The "PACKCODE"
option is used to specify the size of the physical segment. The format of the "PACKCODE"
option (short form "PACKC") isasfollows.

OPTION PACKCODE=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
n specifies the size of the physical segments into which code segments are packed. The
default value of nis 64K for 16-bit applications. Note that thisis also the maximum size of a
physical segment. To suppress automatic grouping of code segments, specify avalue of 0 for
n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

120 The PACKCODE Option

PACKDATA (DOS, 0S/2, QNX, Win16)

3.68 The PACKDATA Option
Formats: DOS, 0S/2, QNX, Win16

Thisoption isintended for 16-bit segmented applications. By default, the Watcom Linker
automatically groups logical far data segments into physical segments. The "PACKDATA"
option is used to specify the size of the physical segment. The format of the "PACKDATA"
option (short form "PACKD") isas follows.

OPTION PACKDATA=N

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| ni
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the value is multiplied by 1024. If mis
specified, the valueis multiplied by 1024* 1024.
n specifies the size of the physical segmentsinto which far data segments are packed. The
default value of nis 64K for 16-bit applications. Note that thisis also the maximum size of a
physical segment. To suppress automatic grouping of far data segments, specify avalue of 0
for n.
Notes:

1. Only adjacent segments are packed into a physical segment.

2. Segments belonging to the same group are packed in a physical segment. Segments
belonging to different groups are not packed into a physical segment.

3. Segments with different attributes are not packed together unless they are explicitly
grouped.

The PACKDATA Option 121

PATH

3.69 The PATH Directive

Formats: All

The"PATH" directiveis used to specify the directories that are to be searched for object files
appearing in subsequent "FILE" directives. When the "PATH" directiveis specified, the
current directory will no longer be searched unlessit appearsin the "PATH" directive. The
format of the "PATH" directive (short form "P") is asfollows.

PATH path_name{; path_name}

where description:
path_name isapath name.

Consider adirective file containing the following linker directives.

path \ mat h

file sin

path \stats

file nmean, variance

It instructs the Watcom Linker to process the following object files:

\ mat h\ si n. obj
\ st at s\ mrean. obj
\stats\vari ance. obj

It isalso possible to specify alist of pathsina"PATH" directive. Consider the following
example.

path \math;\stats
file sin

First, the linker will attempt to load the file "\math\sin.obj". If unsuccessful, the linker will
attempt to load the file "\stats\sin.ohj".

It is possible to override the path specified in a"PATH" directive by preceding the object file
namein a"FILE" directive with an absolute path specification. On QNX-hosted systems, an
absolute path specification is one that begins the "/" character. On al other hosts, an absolute
path specification is one that begins with a drive specification or the "\" character.

122 The PATH Directive

PATH

path \ nmat h

file sin

path \stats

file mean, \nydir\variance

The above directive file instructs the linker to process the following object files:
\ mat h\ si n. obj

\ st at s\ mean. obj
\ mydi r\vari ance. obj

The PATH Directive 123

PRIVILEGE (QNX)

3.70 The PRIVILEGE Option
Formats: QNX

The"PRIVILEGE" option specifies the privilege level (0, 1, 2 or 3) at which the application
will run. The format of the "PRIVILEGE" option (short form "PRIV") is asfollows.

OPTION PRIVILEGE=n

where description:
n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm
d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

The default privilege level isO.

124 The PRIVILEGE Option

PROTMODE (0S/2)

3.71 The PROTMODE Option
Formats: OS/2

The"PROTMODE" option specifies that the application will only run in protected mode.
This option appliesto 16-bit OS/2 applications only. The format of the "PROTMODE"

option (short form "PROT") is as follows.

OPTION PROTMODE

The PROTMODE Option 125

QUIET

3.72 The QUIET Option

Formats: All

The"QUIET" option tells the Watcom Linker to suppress all informational messages. Only
warning, error and fatal messages will beissued. By default, the Watcom Linker issues
informational messages. The format of the "QUIET" option (short form "Q") is asfollows.

OPTION QUIET

126 The QUIET Option

REDEFSOK

3.73 The REDEFSOK Option

Formats: All

The "REDEFSOK™" option tells the Watcom Linker to ignore redefined symbols and to
generate an executable file anyway. By default, warning messages are displayed and an
executable file is generated if redefined symbols are present.

The format of the "REDEFSOK" option (short form "RED") is as follows.

OPTION REDEFSOK

The "NOREDEFSOK" option tells the Watcom Linker to treat redefined symbols as an error
and to not generate an executable file. By default, warning messages are displayed and an
executable file is generated if redefined symbols are present.

The format of the "NOREDEFSOK" option (short form "NORED") is as follows.

OPTION NOREDEF SOK

The REDEFSOK Option 127

REENTRANT (NetWare)

3.74 The REENTRANT Option

Formats: NetWare

The"REENTRANT" option specifies that the moduleisreentrant. That is, if an NLM is
LOADed twice, the actual code in the server’s memory isreused. The NLM’s start procedure

iscalled once for each LOAD. Theformat of the "/REENTRANT" option (short form "RE")
isasfollows.

OPTION REENTRANT

128 The REENTRANT Option

REFERENCE

3.75 The REFERENCE Directive

Formats: All

The "REFERENCE" directiveis used to explicitly reference a symbol that is not referenced
by any object file processed by the linker. 1f any symbol appearing in a"REFERENCE"
directive is not resolved by the linker, an error message will be issued for that symbol
specifying that the symbol is undefined.

The "REFERENCE" directive can be used to force object files from libraries to be linked with
the application. Also note that a symbol appearing in a"REFERENCE" directive will not be
eliminated by dead code elimination. For more information on dead code elimination, see the
section entitled "The ELIMINATE Option" on page 47.

The format of the "REFERENCE" directive (short form "REF") is as follows.

REFERENCE symbol _name{, symbol_name}

where description:
symbol _name is the symbol for which areference is made.

Consider the following example.
ref erence doni no
The symbol domi no will be searched for. The object module that defines this symbol will be

linked with the application. Note that the linker will also attempt to resolve symbols
referenced by this module.

The REFERENCE Directive 129

RESOURCE (0S/2, QNX, Win16, Win32)

3.76 The RESOURCE Option
Formats: 0S/2, QNX, Winl16, Win32

For 16-bit OS/2 executable files and Win16 or Win32 executable files, the "RESOURCE"
option requests the linker to add the specified resource file to the executable file being
generated. For QNX executable files, the "RESOURCE" option specifies the contents of the
resource record.

3.76.1 RESOURCE - 0S/2, Win16, Win32 only

The "RESOURCE" option requests the linker to add the specified resource file to the
executablefile that is being generated. The format of the "RESOURCE" option (short form
"RES") isasfollows.

OPTION RESOURCE([=resource file]

where description:

resource_fileis afile specification for the name of the resource file that is to be added to the
executablefile. If nofile extension is specified, afile extension of "RES" is
assumed for all but QNX format executables.

The "RESOURCE" option cannot be used for 32-bit OS/2 executables.

3.76.2 RESOURCE - QNX only

The "RESOURCE" option specifies the contents of the resource record in QNX executable
files. Theformat of the "RESOURCE" option (short form "RES") is as follows.

OPTION RESOURCE resource_info

resource_info::="string' | =resource file

130 The RESOURCE Option

RESOURCE (0S/2, QNX, Win16, Win32)

where description:

resource_fileisafile specification for the name of the resource file. No file extension is
assumed.

string is a sequence of characters which is placed in the resource record.

If aresourcefileis specified, the contents of the resource file are included in the resource
record.

The resource record contains, for example, help information and is displayed when the
following command is executed.

use <execut abl e>

QNX aso provides the usemsg utility to manipulate the resource record of an executable file.
Itsuse isrecommended. This utility is described in the QNX "Utilities Reference” manual.

The RESOURCE Option 131

RUNTIME (PharLap, Win32)

3.77 The RUNTIME Directive
Formats: PharLap, Win32

For Win32 applications, the "RUNTIME" directive specifies the environment under which the
application will run.

For PharLap applications, the"RUNTIME" directive describesinformation that is used by
386|DOS-Extender to setup the environment for execution of the program.

3.77.1 RUNTIME - Win32 only

The "RUNTIME" directive specifies the environment under which the application will run.
The format of the"RUNTIME" directive (short form "RU") is as follows.

RUNTIME env[=major[.minor]]

env ::= NATIVE | WINDOWS | CONSOLE | POSIX | OS2 | DOSSTYLE

where description:

env=major.minor Specifying a system version in the form "major" or "major.minor" indicates
the minimum operating system version required for the application. For
example, the following indicates that the application requires Windows 95.

runti me wi ndows=4.0

NATIVE (short form "NAT") indicates that the application is a native Windows NT
application.

WINDOWS (short form "WIN") indicates that the application is a Windows application.

CONSOLE (short form "CON") indicates that the application is a character-mode (command
line oriented) application.

POSI X (short form "POS") indicates that the application uses the POSIX subsystem
available with Windows NT.

0Ss2 indicates that the application is a 16-bit OS/2 1.x application.

132 The RUNTIME Directive

RUNTIME (PharLap, Win32)

DOSSTYLE (short form "DOS") indicates that the application is aPhar Lap TNT DOS

extender application that uses INT 21 to communicate to the DOS extender
rather than callstoaDLL.

3.77.2 RUNTIME - PharLap only

The"RUNTIME" directive describesinformation that is used by 386|DOS-Extender to setup
the environment for execution of the program. The format of the "RUNTIME" directive
(short form "RU") is as follows.

RUNTIME run_option{,run_option}

run_option ::= MINREAL=Nn | MAXREAL=n | CALLBUFS=n | MINIBuf=n

offset ::=n | symbol_name

| MAXIBUF=n | NISTACK=n | ISTKSIZE=n
| REALBREAK=0ffset | PRIVILEGED | UNPRIVILEGED

where

description:
represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nmi
d represents adecimal digit. If Ox is specified, the string of digits represents a

hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

symbol_nameis asymbol name.

MINREAL

MAXREAL

(short form "MINR") specifies the minimum number of bytes of conventional
memory required to be free after a program is loaded by 386|DOS-Extender.
Note that this memory is no longer available to the executing program. The
default value of nis 0 in which case 386|DOS-Extender alocates all
conventional memory for the executing program. The Watcom Linker truncates
the specified value to amultiple of 16. n must be less than or equal to
hexadecimal 100000 (64K * 16).

(short form "MAXR") specifies the maximum number of bytes of conventional

memory than can be left free after a program is loaded by 386|DOS-Extender.
Note that this memory is not available to the executing program. The default

The RUNTIME Directive 133

RUNTIME (PharLap, Win32)

value of nis0in which case 386|DOS-Extender allocates all conventional
memory for the executing program. n must be less than or equal to hexadecimal
ffff0. The Watcom Linker truncates the specified value to a multiple of 16.

CALLBUFS (short form "CALLB") specifies the size of the call buffer allocated for
switching between 32-bit protected mode and real mode. This buffer isused for
communicating information between real-mode and 32-bit protected-mode
procedures. The buffer addressis obtained at run-time with a
386|DOS-Extender system call. The size returned isthe size of the buffer in
kilobytes and is less than or equal to 64.

The default buffer sizeis zero unless changed using the "CALLBUFS" option.
The Watcom Linker truncates the specified value to amultiple of 1024. n must
be less than or equal to 64K. Note that n isthe number of bytes, not kilobytes.

MINIBUF (short form "MINIB") specifies the minimum size of the data buffer that is used
when DOS and BIOS functions are called. The size of this buffer is particularly
important for file1/0. If your program reads or writes large amounts of data, a
large value of n should be specified. n represents the number of bytes and must
be less than or equal to 64K. The default value of nis 1K. The Watcom Linker
truncates the specified value to a multiple of 1024.

MAXIBUF (short form "MAXIB") specifies the maximum size of the data buffer that is
used when DOS and BIOS functions are called. The size of this buffer is
particularly important for file 1/0. If your program reads or writes large
amounts of data, alarge value of n should be specified. n represents the number
of bytes and must be less than or equal to 64K. The default value of nis4K.
The Watcom Linker truncates the specified value to a multiple of 1024.

NISTACK (short form "NIST") specifies the number of stack buffersto be allocated for use
by 386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, 4 stack buffers are allocated. n must be greater than or equal to 4.

ISTKSIZE (short form "ISTK") specifiesthe size of the stack buffers allocated for use by
386|DOS-Extender when switching from 32-bit protected mode to real mode.
By default, the size of a stack buffer is 1K. The value of h must be greater than
or equal to 1K and lessthan or equal to 64K. The Watcom Linker truncates the
specified value to a multiple of 1024.

REALBREAK (short form "REALB") specifies how much of the program must be loaded into
conventional memory so that it can be accessed and/or executed in real mode. |If
n is specified, the first n bytes of the program must be loaded into conventional
memory. |f symbol is specified, all bytes up to but not including the symbol
must be loaded into conventional memory.

134 The RUNTIME Directive

RUNTIME (PharLap, Win32)

PRIVILEGED (short form "PRIV") specifies that the executableisto run at Ring O privilege
level.

UNPRIVILEGED (short form "UNPRIV") specifies that the executable isto run at Ring 3
privilege level (i.e., unprivileged). Thisisthe default privilege level.

The RUNTIME Directive 135

RWRELOCCHECK (Win16)

3.78 The RWRELOCCHECK Option
Formats: Winl6

The "RWRELOCCHECK" option causes the linker to check for segment relocations to a
read/write data segment and issue awarning if any are found. This option isuseful if you are
building a 16-bit Windows application that may have more than one instance running at a

given time.

The format of the "RWRELOCCHECK" option (short form "RWR") is as follows.

OPTION RWRELOCCHECK

136 The RWRELOCCHECK Option

SCREENNAME (NetWare)

3.79 The SCREENNAME Option

Formats: NetWare

The"SCREENNAME" option specifies the name of the first screen (the screen that is
automatically created when an NLM isloaded). The format of the "SCREENNAME" option
(short form "SCR") is as follows.

OPTION SCREENNAME 'name’

where description:
name specifies the screen name.

If the"SCREENNAME" option is not specified, the description text specified in the
"FORMAT" directiveis used as the screen name.

The SCREENNAME Option 137

SEGMENT (0S/2, QNX, Win16, Win32)

3.80 The SEGMENT Directive
Formats: 0S/2, QNX, Winl16, Win32

The "SEGMENT" directiveis used to describe the attributes of code and data segments. The
format of the "SEGMENT" directive (short form "SEG") is asfollows.

SEGMENT seg_desc{,seg_desc}

seg_desc ::=seg_id {seg_attrs}+
seg_id ::="seg name | CLASS 'class name’ | TYPE [CODE | DATA]

0s/2:
seg_attrs::= PRELOAD | LOADONCALL
| TOPL | NOIOPL
| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| CONFORMING | NONCONFORMING
| PERMANENT | NONPERMANENT
| INVALID | RESIDENT
| CONTIGUOUS | DYNAMIC
Win32:
seg_attrs::= PAGEABLE | NONPAGEABLE
| SHARED | NONSHARED

Win16:
seg_attrs::= PRELOAD | LOADONCALL
| EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE
| SHARED | NONSHARED
| MOVEABLE | FIXED
| DISCARDABLE
QNX:
seg_attrs::= EXECUTEONLY | EXECUTEREAD
| READONLY | READWRITE

138 The SEGMENT Directive

SEGMENT (0S/2, QNX, Win16, Win32)

where description:
seg_name isthe name of the code or data segment whose attributes are being specified.

class hame isaclassname. The attributes will be assigned to all segments belonging to the
specified class.

PRELOAD (short form "PR", OS/2 and Win16 only) specifies that the segment is loaded as
soon as the executable file isloaded. Thisisthe default.

LOADONCALL (short form"LO", OS/2 and Win16 only) specifies that the segment is loaded
only when accessed.

PAGEABLE (short form "PAGE", Win32 only) specifies that the segment can be paged from
memory. Thisisthe default.

NONPAGEABLE (short form "NONP", Win32 only) specifies that the segment, once loaded
into memory, must remain in memory.

CONFORMING (short form "CON", OS/2 only) specifies that the segment will assume the
1/O privilege of the segment that referenced it. By default, the segment is
"NONCONFORMING".

NONCONFORMING (short form "NONC", OS/2 only) specifies that the segment will not
assume the I/O privilege of the segment that referenced it. Thisisthe default.

|OPL (short form 1", OS/2 only) specifies that the segment requires I/O privilege.
That is, they can access the hardware directly.

NOIOPL (short form "NOI", OS/2 only) specifies that the segment does not require 1/0
privilege. Thisisthe default.

PERMANENT (short form "PERM", OS/2 32-hit only) specifies that the segment is
permanent.

NONPERMANENT (short form "NONPERM", OS/2 32-hit only) specifies that the segment
is not permanent.

INVALID (short form "INV", OS/2 32-hit only) specifies that the segment isinvalid.
RESIDENT (short form "RES", OS/2 32-hit only) specifies that the segment is resident.

CONTIGUOUS (short form "CONT", OS/2 32-bit only) specifies that the segment is
contiguous.

The SEGMENT Directive 139

SEGMENT (0S/2, QNX, Win16, Win32)

DYNAMIC (short form "DYN", OS/2 32-hit only) specifies that the segment is dynamic.

EXECUTEONLY (short form "EXECUTEQO", OS2, QNX and Win16 only) specifies that the
segment can only be executed. This attribute should only be specified for code
segments. This attribute should not be specified if it is possible for the code
segment to contain jump tables which is the case with the Watcom C, C++ and
FORTRAN 77 optimizing compilers.

EXECUTEREAD (short form "EXECUTER", OS2, QNX and Win16 only) specifies that the
segment can only be executed and read. This attribute, the default for code
segments, should only be specified for code segments. This attributeis
appropriate for code segments that contain jump tables as is possible with the
Watcom C, C++ and FORTRAN 77 optimizing compilers.

READONLY (short form "READQO", 0OS/2, QNX and Win16 only) specifies that the segment
can only beread. This attribute should only be specified for data segments.

READWRITE (short form "READW", OS/2, QNX and Win16 only) specifies that the
segment can be read and written. Thisisthe default for data segments. This
attribute should only be specified for data segments.

SHARED (short form "SH") specifies that asingle copy of the segment will be loaded and
will be shared by all processes.

NONSHARED (short form "NONS") specifies that a unique copy of the segment will be
loaded for each process. Thisisthe default.

MOVEABLE (short form "MOV", Win16 only) specifies that the segment is moveable. By
default, segments are moveable.

FIXED (short form "FIX", Winl16 only) specifies that the segment is fixed.

DISCARDABLE (short form "DIS", Win16 only) specifies that the segment is discardable.
By default, segments are not discardable.

Note: Attributes specified for segments identified by a segment name override attributes
specified for segments identified by a class name.

140 The SEGMENT Directive

SHARELIB (NetWare)

3.81 The SHARELIB Option

Formats: NetWare

The"SHARELIB" option specifies the file name of an NLM to be loaded as a shared NLM.
Shared NLMs contain global code and global data that are mapped into all memory protection
domains. This method of loading APIs can be used to avoid ring transitions to call other APIs

in other domains.

The format of the "SHARELIB" option (short form "SHA") is as follows.

OPTION SHARELI|B=shared_nIm

where description:

shared_nIm isthefile name of the shared NLM.

The SHARELIB Option 141

SHOWDEAD

3.82 The SHOWDEAD Option

Formats: All

The"SHOWDEAD" option instructs the linker to list, in the map file, the symbols associated
with dead code and unused C++ virtual functions that it has eliminated from the link. The
format of the "SHOWDEAD" option (short form "SHO") is as follows.

OPTION SHOWDEAD

The"SHOWDEAD" option works best in concert with the"ELIMINATE" and
"VFREMOVAL" options.

142 The SHOWDEAD Option

SORT

3.83 The SORT Directive

Formats: All

The"SORT" directive is used to sort the symbols in the "Memory Map" section of the map
file. By default, symbols are listed on a per module basis in the order the modules were
encountered by the linker. That is, amodule header is displayed followed by the symbols
defined by the module.

The format of the "SORT" directive (short form "SO") is as follows.

SORT [GLOBAL] [ALPHABETICAL]

If the "SORT" directive is specified without any options, asin the following example, the
module headers will be displayed each followed by the list of symbolsit defines sorted by
address.

sort

If only the "GLOBAL" sort option (short form "GL") is specified, as in the following
exampl e, the module headers will not be displayed and all symbolswill be sorted by address.

sort gl obal

If only the"ALPHABETICAL" sort option (short form "ALP") is specified, asin the
following example, the module headers will be displayed each followed by the list of symbols
it defines sorted a phabetically.

sort al phabeti cal

If both the "GLOBAL" and "ALPHABETICAL" sort options are specified, asin the following
exampl e, the module headers will not be displayed and all symbols will be sorted
alphabetically.

sort gl obal al phabeti cal

If you are linking a Watcom C++ application, mangled names are sorted by using the base
name. The base name is the name of the symbol as it appeared in the source file. Seethe
section entitled "The MANGLEDNAMES Option™ on page 87 for more information on
mangled names.

The SORT Directive 143

STACK

3.84 The STACK Option

Formats: All

The"STACK" option can be used to increase the size of the stack. The format of the
"STACK" option (short form "ST") is as follows.

OPTION STACK=n

where description:

n represents avalue. The complete form of nisthe following.
[Ox] d{d}[k| nm

d represents adecimal digit. If Ox is specified, the string of digits represents a
hexadecimal number. If kis specified, the valueis multiplied by 1024. If mis
specified, the value is multiplied by 1024* 1024.

The default stack size varies for both 16-bit and protected-mode 32-bit applications depending
on the executable format. Y ou can determine the default stack size by looking at the map file
that can be generated when an application islinked ("OPTION MAP"). During execution of
your program, you may get an error message indicating your stack has overflowed. If you
encounter such an error, you must link your application again, this time specifying alarger
stack size using the "STACK" option.

Example:
option stack=8192

144 The STACK Option

START

3.85 The START Option

Formats: All

The format of the"START" option is as follows.

OPTION START=symbol_name

where description:
symbol _name specifies the name of the procedure where execution begins.

For the Netware 386 executable format, the default name of the start procedureis™_Prelude”.

The START Option 145

STARTLINK

3.86 The STARTLINK Directive

Formats: All

The"STARTLINK" directive is used to indicate the start of a new set of linker commands that
areto be processed after the current set of commands has been processed. The format of the
"STARTLINK" directive (short form "STARTL") is asfollows.

STARTLINK

The"ENDLINK" directive is used to indicate the end of the set of commands identified by the
"STARTLINK" directive.

146 The STARTLINK Directive

STATICS

3.87 The STATICS Option

Formats: All

The"STATICS" option should only be used if you are developing a Watcom C or C++
application. The Watcom C and C++ compilers produce definitions for static symbolsin the
object file. By default, these static symbols do not appear in the map file. If you want static
symbolsto be displayed in the map file, usethe "STATICS" option.

The format of the"STATICS' option (short form "STAT") isasfollows.

OPTION STATICS

The STATICS Option 147

STUB (0S/2, Win16, Win32)

3.88 The STUB Option
Formats: OS/2, Win16, Win32

The"STUB" option specifies an executable file containing a "stub™” program that isto be
placed at the beginning of the executable file being generated. The "stub™ program will be
executed if the module is executed under DOS. The format of the "STUB" option isas
follows.

OPTION STUB=stub_name

where description:

stub_name isafile specification for the name of the stub executablefile. If no file
extension is specified, afile extension of "EXE" is assumed.

The Watcom Linker will search all paths specified in the PATH environment variable for the

stub executable file. The stub executable file specified by the "STUB" option must not be the
same as the executable file being generated.

148 The STUB Option

SYMFILE

3.89 The SYMFILE Option

Formats: All

The"SYMFILE" option provides a method for specifying an aternate file for debugging
information. The format of the"SYMFILE" option (short form "SYMF") is as follows.

OPTION SYMFILE[=symbol_filg]

where description:

symbol_file isafile specification for the name of the symboal file. If nofile extensionis
specified, afile extension of "sym" is assumed.

By default, no symbol file is generated; debugging information is appended at the end of the
executable file. Specifying this option causes the Watcom Linker to generate a symbol file.
The symbol file contains the debugging information generated by the linker when the
"DEBUG" directiveisused. The symboal file can then be used by Watcom Debugger. If no
debugging information is requested, no symbol fileis created, regardless of the presence of
the "SYMFILE" option.

If no file name is specified, the symbal file will have a default file extension of "sym" and the
same path and file name as the executable file. Note that the symbol file will be placed in the
same directory as the executablefile.

Alternatively, afile name can be specified. The following directive instructs the linker to
generate asymbol file and call it "myprog.sym"” regardless of the name of the executablefile.

option synf=nyprog

Y ou can also specify a path and/or file extension when using the "SYMFILE=" form of the
"SYMFILE" option.

Notes:
1. Thisoption should be used to debug a DOS "COM" executable file. A DOS
"COM" executable file must not contain any additional information other than the

executable information itself since DOS uses the size of the file to determine what
to load.

The SYMFILE Option 149

SYMFILE

2. Thisoption should be used when creating a Microsoft Windows executable file.
Typically, before an executable file can be executed as a Microsoft Windows
application, a resource compiler takes the Windows executable file and a resource
file asinput and combines them. If the executable file contains debugging
information, the resource compiler will strip the debugging information from the
executable file. Therefore, debugging information must not be part of the
executable file created by the linker.

150 The SYMFILE Option

SYMTRACE

3.90 The SYMTRACE Directive

Formats: All

The"SYMTRACE" directive instructs the Watcom Linker to print alist of all modules that
reference the specified symbols. The format of the"SYMTRACE" directive (short form
"SYMT") isasfollows.

SYMTRACE symbol_name{,symbol_name}

where description:
symbol_name is the name of a symboal.
Theinformation is displayed in the map file. Consider the following example.

Example:
W ink systemny _os op map file test lib math synt sin, cos

The Watcom Linker will list, in the map file, al modules that reference the symbols "sin" and
"cos".

The SYMTRACE Directive 151

SYNCHRONIZE (NetWare)

3.91 The SYNCHRONIZE Option

Formats: NetWare

The"SYNCHRONIZE" option forces an NLM to complete loading before starting to oad
other NLMs. Normally, the other NLMs are loading during the startup procedure. The format
of the"SYNCHRONIZE" option (short form "SY") isasfollows.

OPTION SYNCHRONIZE

152 The SYNCHRONIZE Option

SYSTEM

3.92 The SYSTEM Directive

Formats: All
There are three forms of the "SY STEM" directive.

Thefirst form of the "SY STEM" directive (short form "SYS") is called a system definition
directive. It allowsyou to associate a set of linker directives with a specified name called the
system name. This set of linker directivesis called a system definition block. The format of a
system definition directiveis as follows.

SYSTEM BEGIN system _name {directive} END

where description:

system_name is a unigue system name.

directive isalinker directive.

A system definition directive cannot be specified within another system definition directive.
The second form of the "SY STEM" directiveis called a system deletion directive. It allows

you to remove the association of a set of linker directives with a system name. The format of
asystem deletion directiveis as follows.

SYSTEM DELETE system _name

where description:
system_nameis a defined system name.

The third form of the"SY STEM" directive is as follows.

The SYSTEM Directive 153

SYSTEM

SYSTEM system_name

where description:
system_nameis a defined system name.

When this form of the "SY STEM" directive is encountered, all directives specified in the
system definition block identified by syst em_nane will be processed.

Let us consider an example that demonstrates the use of the "SY STEM" directive. The
following linker directives define a system called statistics.

system begin statistics
format dos

i bpath \libs

library stats, graphics
option stack=8k

end

They specify that a statistics application isto be created by using the libraries "stats.lib" and
"graphics.lib". Theselibrary files arelocated in the directory "\libs'. The application requires
a stack size of 8k and the specified format of executable will be generated.

Suppose the linker directives in the above example are contained in the file "stats.Ink". If we
wish to create a statistics application, we can issue the following command.

wWink @tats systemstatistics file nyappl

As demonstrated by the above example, the "SY STEM" directive can be used to localize the
common attributes that describe a class of applications.

The system deletion directive can be used to redefine a previously defined system. Consider
the following example.

154 The SYSTEM Directive

SYSTEM

system begi n at _dos
i bpath 9ATCOWA | i b286
i bpath 9AATCOWA | i b286\ dos
format dos ~
end
system begi n n98 _dos
sys at _dos "
I i bpat h 9ATCOMA | i b286\ dos\ n98
end
system begi n dos
sys at _dos "
end

If you wish to redefine the definition of the "dos" system, you can specify the following set of
directives.

system del et e dos
system begi n dos
sys n98_dos *

end

This effectively redefinesa'dos' system to be equivalent to a"n98_dos" system (NEC
PC-9800 DOS), rather than the previously defined "at_dos" system (AT-compatible DOS).

For additional examples on the use of the "SY STEM" directive, examine the contents of the
WLI NK. LNK and WLSYSTEM LNK files.

Thefile W.I NK. LNK isaspecia linker directivefile that is automatically processed by the
Watcom Linker before processing any other directives. On aDOS, 0OS/2, or Windows-hosted
system, thisfile must be located in one of the paths specified in the PATH environment
variable. On a QNX-hosted system, thisfile should be located in the / et ¢ directory. A
default version of thisfileislocated in the \ WATCOM Bl NW(directory on DOS-hosted
systems, the \ WATCOM BI NP directory on OS/2-hosted systems, the / et ¢ directory on
QNX-hosted systems, and the \ WATCOM BI NNT directory on Windows 95 or Windows
NT-hosted systems. Note that the file WLI NK. LNK includes the file W.SYSTEM LNK which
islocated in the \ WATCOM BI NWdirectory on DOS, OS/2, or Windows-hosted systems and
the/ et ¢ directory on QNX-hosted systems.

ThefilesWLI NK. LNK and WL.SYSTEM LNK reference the WATCOM environment variable
which must be set to the directory in which you installed your software.

The SYSTEM Directive 155

SYSTEM

3.92.1 Special System Names

There are two special system names. When the linker has processed all object files and the
executable file format has not been determined, and a system definition block has not been
processed, the directives specified in the "286" or "386" system definition block will be
processed. The "386" system definition block will be processed if a 32-bit object file has been
processed. Furthermore, only arestricted set of linker directivesisalowed in a"286" and
"386" system definition block. They are asfollows.

* FORMAT

* LIBFILE

* LIBPATH

* LIBRARY

* NAME

» OPTION

* RUNTIME (for Phar Lap executable files only)

* SEGMENT (for OS/2 and QNX executable files only)

156 The SYSTEM Directive

THREADNAME (NetWare)

3.93 The THREADNAME Option

Formats: NetWare

The"THREADNAME" option is used to specify the pattern to be used for generating thread
names. The format of the"THREADNAME" option (short form "THR") is as follows.

OPTION THREADNAME ’thread_name’

where description:

thread_name specifies the pattern used for generating thread names and must be a string of 1
to 5 characters.

Thefirst thread name is generated by appending "0" to thread_name, the second by appending
"1" to thread_name, etc. If the"THREADNAME" option is not specified, thefirst 5
characters of the description specified in the "FORMAT" directive are used as the pattern for
generating thread names.

The THREADNAME Option 157

TOGGLERELOCS (0S/2)

3.94 The TOGGLERELOCS Option
Formats: OS/2

The"TOGGLERELOCS' option is used with LX format executables under 32-bit DOS/4G
only. The"INTERNALRELOCS" option causes the Watcom Linker to include internal
relocation information in DOS/4G LX format executables. Having done so, the linker
normally clearsthe "internal fixups done" flag in the LX executable header (bit 0x10). The
"TOGGLERELOCS" option causes the linker to toggle the value of the "internal fixups done"
flag in the LX executable header (bit 0x10). Thisoption is used with DOS/4G non-zero based
executables. Contact Tenberry Software for further explanation.

The format of the "TOGGLERELOCS" option (short form "TOG") isasfollows.

OPTION TOGGLERELOCS

158 The TOGGLERELOCS Option

UNDEFSOK

3.95 The UNDEFSOK Option

Formats: All

The "UNDEFSOK" option tells the Watcom Linker to generate an executable file even if
undefined symbols are present. By default, no executable file will be generated if undefined
symbols are present.

The format of the "UNDEFSOK" option (short form "U") is as follows.

OPTION UNDEFSOK

The "NOUNDEFSOK" option tells the Watcom Linker to not generate an executablefile if
undefined symbols are present. Thisisthe default behaviour.

The format of the "NOUNDEFSOK" option (short form "NOU") is as follows.

OPTION NOUNDEFSOK

The UNDEFSOK Option 159

VERBOSE

3.96 The VERBOSE Option

Formats: All

The"VERBOSE" option controls the amount of information produced by the Watcom Linker
inthe map file. The format of the "VERBOSE" option (short form "V") isas follows.

OPTION VERBOSE

If the"VERBOSE" option is specified, the linker will list, for each object file, all segmentsit
defines and their sizes. By default, thisinformation is not produced in the map file.

160 The VERBOSE Option

VERSION (NetWare, 0S/2, Win16, Win32)

3.97 The VERSION Option
Formats: NetWare, 0S/2, Win16, Win32

The"VERSION" option can be used to identify the application so that it can be distinguished
from other versions (releases) of the same application.

This option is most useful when creating aDLL or NLM since applications that use the DLL
or NLM may only execute with a specific version of the DLL or NLM.

The format of the "VERSION" option (short form "VERS') is as follows.

0S/2, Win16, Win32:
OPTION VERSI ON=major[.minor]
Netware:
OPTION VERSI ON=major[.minor[.revision]]

where description:
major specifies the major version number.
minor specifies the minor version number and must be less than 100.

revision specifiestherevision. The revision should be anumber or aletter. If itisa
number, it must be less than 27.

The VERSION Option 161

VFREMOVAL

3.98 The VFREMOVAL Option

Formats: All

The"VFREMOVAL" option instructs the linker to remove unused C++ virtual functions. The
format of the "VFREMOVAL" option (short form "VFR") is asfollows.

OPTION VFREMOVAL

If the"VFREMOVAL" option is specified, the linker will attempt to eliminate unused virtua
functions. In order for the linker to do this, the Watcom C++ "zv" compiler option must be
used for all object filesin the executable. The"VFREMOVAL" option works best in concert
with the"ELIMINATE" option.

162 The VFREMOVAL Option

XDCDATA (NetWare)

3.99 The XDCDATA Option

Formats: NetWare

The"XDCDATA" option specifies the name of afile that contains Remote Procedure Call
(RPC) descriptions for callsin thisNLM. RPC descriptions for APIs make it possible for
APIsto be exported across memory-protection domain boundaries.

The format of the "XDCDATA" option (short form "XDC") is as follows.

OPTION XDCDATA=rpc file

where description:

rpc_file is the name of the file containing RPC descriptions.

The XDCDATA Option 163

The WATCOM Linker

164 The XDCDATA Option

4 The DOS Executable File Format

This chapter deals specifically with aspects of DOS executable files. The DOS executable file
format will only run under the DOS operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj _spec}

FORMAT DOS [COM]

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}
LIBRARY library_file{ library file}
MODTRACE obj_module{,obj_module}
NAME exe file

NEWSEGMENT

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK

DOSSEG
ELIMINATE
MANGLEDNAMES
MAP[=map _fil€]

The DOS Executable File Format 165

The WATCOM Linker

MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
OSNAME="string’
PACKCODE=n
PACKDATA=N
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol _name
STATICS
SYMFILE[=symboal_file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library file{ library_file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name

comment
@directive file
You can view all the directives specific to DOS executable files by simply typing the
following:
wink ? dos
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

166 The DOS Executable File Format

The DOS Executable File Format

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
theinput of directive information if you are running a QNX-hosted version of the
Watcom Linker.

4.1 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

Memory Layout 167

The WATCOM Linker

4.2 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

4.3 Using Overlays

The creation of overlaid executablesis not supported by this version of the Watcom Linker.

4.4 Converting Microsoft Response Files to Directive

Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directivefiles. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive file to
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executablefile.

168 Converting Microsoft Response Files to Directive Files

The DOS Executable File Format

Suppose you have a Microsoft linker response file called "test.rsp”. You can convert thisfile
to aWatcom Linker directive file by issuing the following command.

Example:
ms2wW i nk @est.rsp >test. | nk

Y ou can now use the Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Watcom Linker from a Microsoft
response fileis to issue the following command.

Example:
ne2wW i nk @est.rsp | wink

Since the Watcom Linker getsits input from the standard input device, you do not have to
create aWatcom Linker directive file to link your application.

Note that MS2WLINK can also process modul e-definition files used for creating OS/2
applications.

Converting Microsoft Response Files to Directive Files 169

The WATCOM Linker

170 Converting Microsoft Response Files to Directive Files

5 The ELF Executable File Format

This chapter deals specifically with aspects of ELF executable files. The ELF executablefile
format will only run under the operating systems that support the EL F executable file format.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}
ENDLINK

EXPORT entry_name {,entry_name}

FILE obj_spec{,obj_spec}

FORMAT ELF [DLL]

IMPORT external_name {,external_name}
LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}
LIBRARY library file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj _module}
MODULE module_name {,module_name}
NAME exe file

OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK

The ELF Executable File Format 171

The WATCOM Linker

DOSSEG
ELIMINATE
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
OSNAME="string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library_file{ library file}
PATH path_name(; path_name}
REFERENCE symbol_name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol _name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name
comment
@directive file

You can view all the directives specific to ELF executable files by ssimply typing the
following:

wink ? elf
Notes:
1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"

environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

172 The ELF Executable File Format

The ELF Executable File Format

If al of the directive information does not fit on the command line, type the
following.

W i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
theinput of directive information if you are running a QNX-hosted version of the
Watcom Linker.

5.1 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP'
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS'
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are |last in the segment ordering so that
uninitialized data need not take space in the executablefile.

Memory Layout 173

The WATCOM Linker

5.2 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

174 The Watcom Linker Memory Requirements

O The NetWare 386 Executable File Format

This chapter deals specifically with aspects of NetWare 386 executable files. The Novell
NetWare 386 executable file format will only run under the NetWare 386 operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT entry_name {,entry_name}

FILE obj_spec{,obj_spec}

FORMAT NOVELL [NLM | LAN | DSK | NAM] "description’
IMPORT external_name {,external_name}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{ library file}

MODTRACE obj_module{,obj _module}

MODULE module_name {,module_name}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NO]CASEEXACT
CHECK=symbol_name
COPYRIGHT ’string’
CUSTOM=file_name

The NetWare 386 Executable File Format 175

The WATCOM Linker

CVPACK
DOSSEG
ELIMINATE
EXIT=symbol_name
HELP=help file
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
MANGLEDNAMES
MAP[=map fil€]
MAXERRORS=n
MESSAGES=msg_file
MULTILOAD
NAMELEN=n
NLMFLAGS=some value
NODEFAULTLIBS
OSDOMAIN
OSNAME="¢tring’
PSEUDOPREEMPTION
QUIET
REDEFSOK
SHOWDEAD
REENTRANT
SCREENNAME 'name’
SHARELIB=shared_nIm
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal filg]
SYNCHRONIZE
THREADNAME 'thread nam€’
[NOJUNDEFSOK
VERBOSE
VERSION=major[.minor[.revision]]
VFREMOVAL
XDCDATA=rpc _file
OPTLIB library file{ library_file}
PATH path_name{; path_name}
REFERENCE symbol _name{,symbol_name}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system _name {directive} END

176 The NetWare 386 Executable File Format

The NetWare 386 Executable File Format

SYSTEM system _name
comment
@directive file

Y ou can view al the directives specific to NetWare 386 executable files by simply typing the
following:

wink ? nov
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

W i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
theinput of directive information if you are running a QNX-hosted version of the
Watcom Linker.

6.1 NetWare Loadable Modules

NetWare L oadable Modules (NLMs) are executable files that run in file server memory under
the NetWare 386 operating system. NLMs can be loaded and unloaded from file server
memory while the server is running. When running they actually become part of the
operating system thus acting as building blocks for a server environment tailored to your
needs.
There are four types of NLMs, each identified by the file extension of the executablefile.

« Utility and server applications (executable files with extension "nim").

* LAN drivers (executable files with extension "lan").

NetWare Loadable Modules 177

The WATCOM Linker

* Disk drivers (executable files with extension "dsk").

» Modules that define file system name spaces (executable files with extension "nam™).

The Watcom Linker can generate all four types of NLMs.

6.2 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

178 Memory Layout

The NetWare 386 Executable File Format

6.3 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

The Watcom Linker Memory Requirements 179

The WATCOM Linker

180 The Watcom Linker Memory Requirements

{ The 0S/2 Executable and DLL File Formats

This chapter deals specifically with aspects of OS/2 executablefiles. The OS/2 16-bit
executable file format will run under the following operating systems.

1. 16-hit OS2 1.x
2. 32-bit 052 2.x and 3.x (Warp)
3. Phar Lap’s 286|DOS-Extender

The OS/2 32-hit linear executable file format will run under the following operating systems.

052 2.x (LX format only)

0S/2 3.x (LX format only)

Tenberry Software’ s DOS/4G and DOS4GW DOS extenders (LE format only)
FlashTek’s DOS Extender (LX format only)

AwWdE

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_ name=symbol_name{,alias_name=symbol_name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc_file

FILE obj_spec{,obj_spec}

FORMAT OS2 [exe_type] [dIl_form | exe_attrs]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

The OS/2 Executable and DLL File Formats 181

The WATCOM Linker

LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_module{,obj_module}
NAME exe file

NEWSEGMENT

PATH path_name{; path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NOJCASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG

ELIMINATE

HEAPSI ZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
INTERNALRELOCS
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NEWFILES
NOAUTODATA
NODEFAULTLIBS
OFFSET
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="string’
PACKCODE=n
PACKDATA=N
PROTMODE

QUIET

REDEFSOK
RESOURCE-=resource file
SHOWDEAD
STACK=n

182 The OS/2 Executable and DLL File Formats

The OS/2 Executable and DLL File Formats

START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_fil€]
TOGGLERELOCS
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor]
VFREMOVAL
OPTLIB library_file{ library file}
REFERENCE symbol_name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol _name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name
comment
@directive file

You can view all the directives specific to OS/2 executable files by simply typing the
following:

W ink ? os2
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

The OS/2 Executable and DLL File Formats 183

The WATCOM Linker

7.1 Dynamic Link Libraries

The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets |oaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

Program modules are contained in files whose name has afile extension of "exe". Dynamic
Link Libraries are contained in files whose name has afile extension of "dII". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

Let us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functionsin Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, the linking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

7.1.1 Creating a Dynamic Link Library

184

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system system os2v2 dl |
In addition, you must specify which functionsin the Dynamic Link Library are to be made

available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries

The OS/2 Executable and DLL File Formats

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other
Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

7.1.2 Using a Dynamic Link Library

To useaDynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

The first method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongs to so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. Animport library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. Seethe chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library is the preferred method of providing references to functionsin
Dynamic Link Libraries. When a Dynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies theimport library in a"LIBRARY" directive need not

be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changesin the Dynamic Link Library.

7.2 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"

3. al segments belonging to group "DGROUP" with class "BEGDATA"

Memory Layout 185

The WATCOM Linker

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"
6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

7.3 The Watcom Linker Memory Requirements

The Watcom Linker uses al available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileis to contain debugging information.
For this reason, atemporary disk fileis used when all available memory is used by the
Watcom Linker.

Normally, the temporary fileis created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tnmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

186 The Watcom Linker Memory Requirements

The OS/2 Executable and DLL File Formats

7.4 Converting Microsoft Response Files to Directive

Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directive files. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

Input to MS2WLINK is processed in the same way as the Microsoft linker processesitsinput.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive fileto
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executablefile.

Suppose you have a Microsoft linker response file called "test.rsp”. You can convert thisfile
to aWatcom Linker directive file by issuing the following command.

Example:
nms2w i nk @est.rsp >test.|nk

Y ou can now use the Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Watcom Linker from a Microsoft
response fileis to issue the following command.

Example:
ms2wWl i nk @est.rsp | wink

Since the Watcom Linker getsits input from the standard input device, you do not have to
create a Watcom Linker directive file to link your application.

Note that MS2WLINK can also process modul e-definition files used for creating OS/2
applications.

Converting Microsoft Response Files to Directive Files 187

The WATCOM Linker

188 Converting Microsoft Response Files to Directive Files

8 The Phar Lap Executable File Format

This chapter deals specifically with aspects of Phar Lap 386|DOS-Extender executable files.
The Phar Lap executable file format will run under the following operating systems.

1. Phar Lap’'s 386|DOS-Extender
2. Watcom's 32-bit Windows supervisor (relocatable format only)

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directiveis any of the following:

ALIAS alias name=symbol_name{,alias name=symbol_name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}

ENDLINK

FILE obj_spec{,obj_spec}

FORMAT PHARLAP [EXTENDED | REX | SEGMENTED]
LANGUAGE lang

LIBFILE obj_file{,obj file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj file}

MODTRACE obj_module{,obj _module}

NAME exe file

OPTION option{,option}

ARTIFICIAL
[NO]CACHE
[NOJCASEEXACT
CVPACK
DOSSEG

The Phar Lap Executable File Format 189

The WATCOM Linker

ELIMINATE
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXDATA=n
MAXERRORS=N
MINDATA=N
NAMELEN=n
NODEFAULTLIBS
OFFSET=n
OSNAME="string’
QUIET
REDEFSOK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
SYMFILE[=symboal file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL

OPTLIB library_file{ library file}

PATH path_name{; path_name}

REFERENCE symbol_name{,symbol_name}

RUNTIME run_option{,run_option}

SORT [GLOBAL] [ALPHABETICAL]

STARTLINK

SYMTRACE symbol_name{,symbol_name}

SYSTEM BEGIN system _name {directive} END

SYSTEM system _name

comment

@directive file

You can view all the directives specific to Phar Lap 386|DOS-Extender executable files by
simply typing the following:

w ink ? phar
Notes:
1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"

environment variable, the contents of that file will be displayed when the following
command is issued.

190 The Phar Lap Executable File Format

The Phar Lap Executable File Format

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

W i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directive information asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running a DOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
theinput of directive information if you are running a QNX-hosted version of the
Watcom Linker.

8.1 32-bit Protected-Mode Applications

The Watcom Linker generates executable files that run under Phar Lap’s 386|DOS-Extender.
386|DOS-Extender provides a 32-bit protected-mode environment for programs running under
PC DOS. Running in 32-bit protected mode allows your program to access all of the memory
inyour machine.

Essentially, what 386|DOS-Extender does is provide an interface between your application
and DOS running in real mode. Whenever your program issues a software interrupt (DOS
and BIOS system calls), 386|DOS-Extender intercepts the requests, transfers data between the
protected-mode and real-mode address space, and calls the corresponding DOS system
function running in real mode.

8.2 Memory Usage

When running a program under 386|DOS-Extender, memory for the program is allocated from
conventional memory (memory below one megabyte) and extended memory. Conventional
memory is alocated from ablock of memory that is obtained from DOS by
386|DOS-Extender at initialization time. By default, al available memory is allocated at
initialization time; no conventional memory remains free. The "MINREAL" and
"MAXREAL" options of the "/RUNTIME" directive control the amount of conventional
memory initially left free by 386|DOS-Extender.

Part of the conventional memory allocated at initialization is required by 386|DOS-Extender.
The following is alocated from conventional memory for use by 386|DOS-Extender.

Memory Usage 191

The WATCOM Linker

A data buffer is alocated and is used to pass datato DOS and BIOS system
functions. The size allocated is controlled by the "MINIBUF" and "MAXIBUF"
options of the"RUNTIME" directive.

Stack spaceis allocated and is used for switching between 32-bit protected mode
and real mode. The size dlocated is controlled by the "NISTACK" and
"ISTKSIZE" options of the"RUNTIME" directive.

A call buffer isallocated and is used for passing data on function calls between
32-hit protected mode and real mode. The size allocated is controlled by the
"CALLBUFS' option of the "RUNTIME" directive.

When a program is loaded by 386|DOS-Extender, memory to hold the entire programis
alocated. In addition, memory beyond the end of the program is allocated for use by the
program. By default, all extramemory is allocated when the program isloaded. It is assumed
that any memory not required by the program is freed by the program. The amount of
memory allocated at the end of the program is controlled by the"MINDATA" and
"MAXDATA" options.

8.3 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1

all "USE16" segments. These segments are present in applications that execute in
both real mode and protected mode. They arefirst in the segment ordering so that
the "REALBREAK" option of the "RUNTIME" directive can be used to separate
the real-mode part of the application from the protected-mode part of the
application. Currently, the "RUNTIME" directiveisvalid for Phar Lap executables
only.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP'
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

192 Memory Layout

The Phar Lap Executable File Format

7. al segments belonging to group "DGROUP" with class"STACK"

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

8.4 The Watcom Linker Memory Requirements

The Watcom Linker uses al available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It is possible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk fileis used when all available memory is used by the
Watcom Linker.

Normally, the temporary fileis created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tnmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

The Watcom Linker Memory Requirements 193

The WATCOM Linker

194 The Watcom Linker Memory Requirements

9 The QNX Executable File Format

This chapter deals specifically with aspects of QNX executablefiles. The QNX executable
file format will only run under the QNX operating system.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

wlink {directive}

where directive is any of the following:

ALIAS symbol_name=symbol_name{,symbol_name=symbol _name}
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}
ENDLINK

FILE obj_spec{,obj _spec}
FORMAT QNX [FLAT]
LANGUAGE

LIBFILE obj_file{,obj_file}
LIBPATH path_name{: path_name}
LIBRARY library_file{ library file}
MODFILE obj_file{,obj_file}
MODTRACE obj_spec{,obj_spec}
NAME exe file

NEWSEGMENT

OPTION option{,option}

ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DOSSEG
ELIMINATE
HEAPSI ZE=n

The QNX Executable File Format 195

The WATCOM Linker

INCREMENTAL
LINEARRELOCS
LONGLIVED
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=n
NAMELEN=n
NODEFAULTLIBS
NORELOCS
OFFSET=n
OSNAME='"string’
PACKCODE=n
PACKDATA=n
PRIVILEGE=n
QUIET
REDEF SOK
RESOURCE[=resource file| string']
SHOWDEAD
STACK=n
START=symbol _name
STATICS
SYMFILE[=symboal_file]
[NOJUNDEFSOK
VERBOSE
VFREMOVAL
OPTLIB library file{ library_file}
PATH path_name{:path_name}
REFERENCE symbol _name{,symbol_name}
SEGMENT seg_desc{,seg_desc}
SORT [GLOBAL] [ALPHABETICAL]
STARTLINK
SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system_name
comment
@directive file

You can view all the directives specific to QNX executable files by simply typing the
following:

wink ? gnx

196 The QNX Executable File Format

The QNX Executable File Format

Notes:

If thefile/ et ¢/ Wl i nk. hl p exists, the contents of that file will be displayed
when the following command is issued.

wink ?

If al of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

9.1 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1.

2.

5.

6.

all segments not belonging to group "DGROUP" with class "CODE"
all other segments not belonging to group "DGROUP"
all segments belonging to group "DGROUP" with class "BEGDATA"

all segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

all segments belonging to group "DGROUP" with class "BSS"

all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Memory Layout 197

The WATCOM Linker

Segments belonging to class "BSS' contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS" and "STACK" arelast in the segment ordering so that
uninitialized data need not take space in the executablefile.

9.2 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileis to contain debugging information.
For this reason, atemporary disk file is used when all available memory is used by the
Watcom Linker.

Normally, the temporary fileis created in the current working directory. However, by
defining the "TMPDIR" environment variable to be a directory, you can tell the Watcom
Linker where to create the temporary file. This can be particularly useful if you have a RAM
disk. Consider the following definition of the "TMPDIR" environment variable.

export TMPDI R=/tnp

The Watcom Linker will create the temporary file in the directory "/tmp".

198 The Watcom Linker Memory Requirements

10 The Win16 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win16 executable files. The Winl6 executable
file format will run under Windows 3.x, Windows 95, and Windows NT.

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias name=symbol_name{,alias_ name=symbol _name}
ANONYMOUSEXPORT export{,export} | =lbc_file
DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT WINDOWS [dIl_form] [MEMORY] [FONT]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{; path_name}

LIBRARY library_file{ library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

NEWSEGMENT

PATH path_name{; path_name}

OPTION option{,option}

The Win16 Executable and DLL File Formats 199

The WATCOM Linker

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DESCRIPTION 'string’
DOSSEG
ELIMINATE
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MANYAUTODATA
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NOAUTODATA
NODEFAULTLIBS
OLDLIBRARY=dll_name
ONEAUTODATA
OSNAME="string’
PACKCODE=n
PACKDATA=nN
QUIET
REDEFSOK
RESOURCE-=resource file
RWRELOCCHECK
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VERSI ON=major[.minor]
VFREMOVAL

OPTLIB library_file{ library file}

REFERENCE symbol_name{,symbol_name}

SEGMENT seg_desc{,seg_desc}

200 The Win16 Executable and DLL File Formats

The Win16 Executable and DLL File Formats

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name

comment

@directive file

You can view all the directives specific to Winl6 executable files by simply typing the
following:

wink ? win
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation as required. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

10.1 Fixed and Moveable Segments

All segments have attributes that tell Windows how to manage the segment. One of these
attributes specifies whether the segment is fixed or moveable. Moveable segments can be
moved in memory to satisfy other memory requests. When a segment is moved, all near
pointersto that segment are still valid since a near pointer references memory relative to the
start of the segment. However, far pointers are no longer valid once a segment has been
moved. Fixed segments, on the other hand, cannot be moved in memory. A segment must be
fixed if there exists far pointers to that segment that Windows cannot adjust if that segment
were moved.

Fixed and Moveable Segments 201

The WATCOM Linker

Thisis amemory-management issue for real-mode Windows only. However, if aDLL is
marked as "fixed", Windows 3.x will placeit in the lower 640K real-mode memory
(regardless of the mode in which Windows 3.x is running). Since the lower 640K isalimited
resource, you normally would want aDLL to be marked as "moveable".

Most segments, including code and data segments, are moveable. Some exceptions exist. If
your program contains afar pointer, the segment which it references must be fixed. If it were
moveabl e, the segment address portion of the far pointer would be invalid when Windows
moved the segment.

All non-Windows programs are assigned fixed segments when they run under Windows.
These segments must be fixed since there is no information in the executable file that
describes how segments are referenced. Whenever possible, your application should consist
of moveable segments since fixed segments can cause memory management problems.

10.2 Discardable Segments

Moveable segments can a so be discardable. Memory allocated to a discardable segment can
be freed and used for other memory requests. A "least recently used" (LRU) algorithm is used
to determine which segment to discard when more memory is required.

Discardable segments are usually segments that do not change once they are loaded into
memory. For example, code segments are discardable since programs do not usually modify
their code segments. When a segment is discarded, it can be reloaded into memory by
accessing the executablefile.

Discardable segments must be moveable since they can be reloaded into a different areain
memory than the area they previously occupied. Note that moveable segments need not be
discardable. Obviously, data segments that contain read/write data cannot be discarded.

10.3 Dynamic Link Libraries

The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets loaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

202 Dynamic Link Libraries

The Win16 Executable and DLL File Formats

Program modules are contained in files whose name has a file extension of "exe". Dynamic
Link Libraries are contained in files whose name has a file extension of "dll". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

L et us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functions in Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, thelinking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

10.3.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system system wi ndows _dl |

In addition, you must specify which functionsin the Dynamic Link Library are to be made
available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other

Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

Dynamic Link Libraries 203

The WATCOM Linker

10.3.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongsto so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. Animport library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. Seethe chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’'s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library isthe preferred method of providing references to functionsin
Dynamic Link Libraries. When aDynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a"LIBRARY" directive need not

be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changesin the Dynamic Link Library.

10.4 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"
3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

204 Memory Layout

The Win16 Executable and DLL File Formats

6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

10.5 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk fileis used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tnmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

10.6 Converting Microsoft Response Files to Directive

Files

A utility called MS2WLINK can be used to convert Microsoft linker response files to Watcom
Linker directivefiles. The response files must correspond to the linker found in version 7 or
earlier of Microsoft C. Later versions of response files such as those used with Microsoft
Visual C++ are not entirely supported.

The same utility can also convert much of the content of IBM OS/2 LINK 386 response files
since the syntax is similar.

Converting Microsoft Response Files to Directive Files 205

The WATCOM Linker

Input to MS2WLINK is processed in the same way as the Microsoft linker processes itsinput.
The difference is that MS2WLINK writes the corresponding Watcom Linker directive file to
the standard output device instead of a creating an executable file. The resulting output can be
redirected to a disk file which can then be used as input to the Watcom Linker to produce an
executablefile.

Suppose you have a Microsoft linker response file called "test.rsp". You can convert thisfile
to aWatcom Linker directive file by issuing the following command.

Example:
ns2wW i nk @est.rsp >test.|nk

Y ou can now use the Watcom Linker to link your program by issuing the following command.

Example:
W ink @ est

An aternative way to link your application with the Watcom Linker from a Microsoft
response file isto issue the following command.

Example:
nms2wW i nk @est.rsp | wWink

Since the Watcom Linker getsits input from the standard input device, you do not have to
create aWatcom Linker directivefile to link your application.

Note that MS2WLINK can also process module-definition files used for creating OS/2
applications.

206 Converting Microsoft Response Files to Directive Files

11 The Win32 Executable and DLL File
Formats

This chapter deals specifically with aspects of Win32 executable files. The Win32 executable
file format will run under Windows 95, Windows NT, and Phar Lap’'s TNT DOS extender. It
may also run under Windows 3.x using the Win32S subsystem (you are restricted to a subset
of the Win32 API).

Input to the Watcom Linker is specified on the command line and can be redirected to one or
more files or environment strings. The Watcom Linker command line format is as follows.

WLINK {directive}

where directive is any of the following:

ALIAS alias_name=symbol_name{,alias_name=symbol_name}
ANONYMOUSEXPORT export{,export} | =lbc_file
COMMIT mem_type

DEBUG dbtype [dblist] |

DISABLE msg_num{,msg_num}

ENDLINK

EXPORT export{,export}

EXPORT =lbc file

FILE obj_spec{,obj_spec}

FORMAT WINDOWSNT [TNT] [dll_form]
IMPORT import{,import}

LANGUAGE lang

LIBFILE obj_file{,obj_file}

LIBPATH path_name{;path_name}

LIBRARY library file{,library file}

MODFILE obj_file{,obj_file}

MODTRACE obj_module{,obj _module}

NAME exe file

The Win32 Executable and DLL File Formats 207

The WATCOM Linker

PATH path_name(; path_name}
OPTION option{,option}

ALIGNMENT=n
ARTIFICIAL
[NOJCACHE
[NO]JCASEEXACT
CVPACK
DESCRIPTION ’string’
DOSSEG
ELIMINATE
HEAPSIZE=n
IMPFILE[=imp_fil€]
IMPLIB[=imp_lib]
INCREMENTAL
MANGLEDNAMES
MAP[=map _fil€]
MAXERRORS=N
MODNAME=module_name
NAMELEN=n
NODEFAULTLIBS
NORELOCS
NOSTDCALL
OBJALIGN=n
OFFSET
OLDLIBRARY=dIl_name
OSNAME="¢tring’
QUIET
REDEFSOK
RESOURCE-=resource file
SHOWDEAD
STACK=n
START=symbol_name
STATICS
STUB=stub_name
SYMFILE[=symbol_fil€]
[NOJUNDEFSOK
VERBOSE
VERSION=major[.minor]
VFREMOVAL

OPTLIB library_file{ library file}

REFERENCE symbol_name{,symbol_name}

208 The Win32 Executable and DLL File Formats

The Win32 Executable and DLL File Formats

RUNTIME run_option

SEGMENT seg_desc{,seg_desc}

SORT [GLOBAL] [ALPHABETICAL]
STARTLINK

SYMTRACE symbol_name{,symbol_name}
SYSTEM BEGIN system_name {directive} END
SYSTEM system _name

comment

@directive file

You can view all the directives specific to Win32 executable files by simply typing the
following:

wink ? nt
Notes:

1. If thefile"wlink.hlp" islocated in one of the paths specified in the "PATH"
environment variable, the contents of that file will be displayed when the following
command is issued.

wink ?

2. If dl of the directive information does not fit on the command line, type the
following.

w i nk

The prompt "WLINK>" will appear on the next line. Y ou can enter as many lines
of directiveinformation asrequired. Press"Ctrl/Z" followed by the "Enter" key to
terminate the input of directive information if you are running aDOS, OS/2 or
Windows NT-hosted version of the Watcom Linker. Press"Ctrl/D" to terminate
the input of directive information if you are running a QNX-hosted version of the
Watcom Linker.

11.1 Dynamic Link Libraries

The Watcom Linker can generate two forms of executable files; program modules and
Dynamic Link Libraries. A program module is the executable file that gets |loaded by the
operating system when you run your application. A Dynamic Link Library isreally alibrary
of routines that are called by a program module but not linked into the program module. The
executable codein aDynamic Link Library isloaded by the operating system during the
execution of a program module when aroutine in the Dynamic Link Library is called.

Dynamic Link Libraries 209

The WATCOM Linker

Program modules are contained in files whose name has a file extension of "exe". Dynamic
Link Libraries are contained in files whose name has a file extension of "dll". The Watcom
Linker "FORMAT" directive can be used to select the type of executable file to be generated.

L et us consider some of the advantages of using Dynamic Link Libraries over standard
libraries.

1. Functionsin Dynamic Link Libraries are not linked into your program. Only
references to the functions in Dynamic Link Libraries are placed in the program
module. These references are called import definitions. Asaresult, thelinking
timeisreduced and disk spaceis saved. If many applications reference the same
Dynamic Link Library, the saving in disk space can be significant.

2. Since program modules only reference Dynamic Link Libraries and do not contain
the actual executable code, a Dynamic Link Library can be updated without
re-linking your application. When your application is executed, it will use the
updated version of the Dynamic Link Library.

3. Dynamic Link Libraries also allow sharing of code and data between the
applications that use them. If many applications that use the same Dynamic Link
Library are executing concurrently, the sharing of code and data segments
improves memory utilization.

11.1.1 Creating a Dynamic Link Library

To create aDynamic Link Library, you must place the"DLL" keyword following the system
nameinthe"SYSTEM" directive.

system systemnt _wi n dl |

In addition, you must specify which functionsin the Dynamic Link Library are to be made
available to applications which useit. Thisisachieved by using the "EXPORT" directive for
each function that can be called by an application.

Dynamic Link Libraries can reference other Dynamic Link Libraries. Referencesto other

Dynamic Link Libraries are resolved by specifying "IMPORT" directives or using import
libraries.

210 Dynamic Link Libraries

The Win32 Executable and DLL File Formats

11.1.2 Using a Dynamic Link Library

To use aDynamic Link Library, you must tell the Watcom Linker which functions are
contained in a Dynamic Link Library and the name of the Dynamic Link Library. Thisis
achieved in two ways.

Thefirst method isto use the "IMPORT" directive. The"IMPORT" directive names the
function and the Dynamic Link Library it belongsto so that the Watcom Linker can generate
an import definition in the program module.

The second method is to use import libraries. Animport library is a standard library which
contains object modules with special object records that define the functions belonging to a
Dynamic Link Library. Animport library is created from a Dynamic Link Library using the
Watcom Library Manager. The resulting import library can then be specified in a
"LIBRARY" directive in the same way one would specify a standard library. Seethe chapter
entitled "The Watcom Library Manager" in the Watcom C/C++ Tools User’'s Guide or the
Watcom FORTRAN 77 Tools User’s Guide for more information on creating import
libraries.

Using an import library isthe preferred method of providing references to functionsin
Dynamic Link Libraries. When aDynamic Link Library is modified, typically the import
library corresponding to the modified Dynamic Link Library is updated to reflect the changes.
Hence, any directive file that specifies the import library in a"LIBRARY" directive need not

be modified. However, if you are using "IMPORT" directives, you may have to modify the
"IMPORT" directives to reflect the changesin the Dynamic Link Library.

11.2 Memory Layout

The following describes the segment ordering of an application linked by the Watcom Linker.
Note that this assumes that the "DOSSEG" linker option has been specified.

1. al segments not belonging to group "DGROUP" with class"CODE"
2. all other segments not belonging to group "DGROUP"
3. all segments belonging to group "DGROUP" with class "BEGDATA"

4. dl segments belonging to group "DGROUP" not with class"BEGDATA", "BSS"
or "STACK"

5. all segments belonging to group "DGROUP" with class "BSS"

Memory Layout 211

The WATCOM Linker

6. all segments belonging to group "DGROUP" with class"STACK"

A special segment belonging to class "BEGDATA" is defined when linking with Watcom
run-time libraries. This segment isinitialized with the hexadecimal byte pattern "01" and is
the first segment in group "DGROUP" so that storing data at location O can be detected.

Segments belonging to class "BSS" contain uninitialized data. Note that this only includes
uninitialized datain segments belonging to group "DGROUP". Segments belonging to class
"STACK" are used to define the size of the stack used for your application. Segments
belonging to the classes "BSS' and "STACK" are last in the segment ordering so that
uninitialized data need not take space in the executablefile.

11.3 The Watcom Linker Memory Requirements

The Watcom Linker uses all available memory when linking an application. For DOS-hosted
versions of the Watcom Linker, this includes expanded memory (EMS) and extended
memory. It ispossible for the size of the image being linked to exceed the amount of memory
available in your machine, particularly if the image fileisto contain debugging information.
For this reason, atemporary disk fileis used when all available memory is used by the
Watcom Linker.

Normally, the temporary file is created in the default directory. However, by defining the
"tmp" environment variable to be a directory, you can tell the Watcom Linker where to create
the temporary file. This can be particularly useful if you have aRAM disk. Consider the
following definition of the "tmp" environment variable.

set tnmp=\tnp

The Watcom Linker will create the temporary file in the directory "\tmp".

212 The Watcom Linker Memory Requirements

12 Watcom Linker Diagnostic Messages

The Watcom Linker issues three classes of messages; fatal errors, errors and warnings. Each
message has a 4-digit number associated with it. Fatal messages start with the digit 3, error
messages start with the digit 2, and warning messages start with the digit 1. It is possiblefor a
message to be issued as awarning or an error.

If afatal error occurs, the linker will terminate immediately and no executable file will be
generated.

If an error occurs, the linker will continue to execute so that all possible errors are issued.
However, no executable file will be generated since these errors do not permit a proper
executable file to be generated.

If awarning occurs, the linker will continue to execute. A warning message is usually
informational and does not prevent the creation of a proper executable file. However, all
warnings should eventually be corrected.

The messages listed contain referencesto %, %5, %, %, %, %, and % . They
represent strings that are substituted by the Watcom Linker to make the error message more
precise.

1. % representsastring. This may be a segment or group name, or the name of a
linker directive or option.

2. & represents the name of a symbol.

3. Y% represents an address. The format of the address depends on the format of the
executable file being generated.

4. % represents a hexadecimal number.
5. %l representsintegersin the range -32768 and 32767.
6. 9% representsintegersin the range -2147483648 and 2147483647.

7. 9% represents an executable file format such as DOS, WINDOWS, PHARLAP,
NOVELL, OS2, QNX or ELF.

Watcom Linker Diagnostic Messages 213

The WATCOM Linker

Thefollowingisalist of all warning and error messages produced by the Watcom Linker
followed by a description of the message. A message may contain more than one reference to
"%s". In such acase, the description will reference them as "%sn" where n is the occurrence
of "%s" in the message.

MSG 2002 ** internal ** - %s
If this message occurs, you have found a bug in the linker and should report it.
MSG 2008 cannot open %sl: %s2

An error occurred while trying to open the file "%s1". The reason for the error
isgiven by "%s2". Generally this error message isissued when the linker cannot
open afile (e.g., an object file or an executablefile).

MSG 3009 dynamic memory exhausted

Thelinker uses all available memory when linking an application. For
DOS-hosted versions of the linker, this includes expanded memory (EMS) and
extended memory. When all available memory is used, a spill file will be used.
Therefore, unless you are low on disk space, the linker will always be able to
generate the executable file. Dynamic memory is the memory the linker uses to
build itsinternal data structures and symbol table. Dynamic memory isthe
amount of unallocated memory available on your machine (including virtual
memory for those operating systems that support it). A spill fileisnot used for
dynamic memory. If the linker issues this message, it cannot link your
application. The following are suggestions that may help you in this situation.

1. Concatenate all your object files into one and specify only the
resulting object file asinput to the linker. For example, if you are
linking in a DOS environment, you can issue the following DOS
command.

C>copy/b *.obj all. obj

This technique only works for OMF-type object files. This
significantly reduces the size of thefile list the linker must maintain.

2. Object files may contain arecord which specifies the module name.
Thisinformation is used by Watcom Debugger to locate modules
during a debugging session and usually contains the full path of the
source file. This can consume a significant amount of memory when
many such object filesare being linked. |f your sourceisbeing
compiled by the Watcom C or C++ compiler, you can use the "nm"

214 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

option to set the module name to just the file name. This reducesthe
amount of memory required by thelinker. If your are using Watcom
Debugger to debug your application, you may have to use the "set
source" command so that the source corresponding to a module can
be located.

3. Typically, when you are compiling a program for alarge code model,
each module defines a different "text" segment. If you are compiling
your application using the Watcom C or C++ compiler, you can
reduce the number of "text" segments that the linker has to process by
specifying the "nt" option. The "nt" option allows you to specify the
name of the "text" segment so that a group of object files define the
same "text" segment.

MSG 2010,3010 /O error processing %sl : %s2

MSG 2011

MSG 2012

MSG 3013

MSG 1014

MSG 2015

An error has occurred while processing the file "%s1". The cause of the error is
given by "%s2". Thiserror isusually detected while reading from object and
library files or writing to the spill file or executable file. For example, this error
would beissued if a"disk full" condition existed.

invalid object file attribute

The linker encountered an object file that was not of the format required of an
object file.

invalid library file attribute

The linker encountered alibrary file that was not of the format required of a
library file.

break key detected

The linking process was interrupted by the user from the keyboard.

stack segment not found

The linker identifies the stack segment by a segment defined as having the
"STACK" attribute. This messageisissued if no such segment is encountered.
Thisusually happensif the linker cannot find the run-time libraries required to

link your application.

bad relocation type specified

Watcom Linker Diagnostic Messages 215

The WATCOM Linker

MSG 2016

MSG 2017

MSG 2018

MSG 1019

MSG 2020

Thismessage isissued if aarelocation isfound in an object file which the linker
does not support.

%a: absolutetarget invalid for self-relative relocation

This message isissued, for example, if anear call or jump is made to an externa
symbol which is defined using the "EQU" assembler directive. "%a" identifies
the location of the near call or jump instruction.

bad location specified for self-relativerelocation at %a

Thismessageisissued if abad fixup is encountered. "%a" defines the location
of the fixup.

relocation offset at %ais out of range

This message is issued when the offset part of arelocation exceeds 64K in a
16-hit executable or an Alpha executable. "%a" defines the location of the
fixup. Theerror is most commonly caused by errors in coding assembly
language routines. Consider a module that references an external symbol that is
defined in a segment different from the one in which the reference occurred.
The module, however, specifies that the segment in which the symbol is defined
is the same segment as the segment that references the symbol. Thiserror is
most commonly caused when the "EXTRN" assembler directiveis placed after
the "SEGMENT" assembler directive for the segment referencing the symbol. If
the segment that references the symbol is alocated far enough away from the
segment that defines the symbol, the linker will issue this message.

segment relocation at % a

This message is issued when a 16-hit segment relocation is encountered and
"FORMAT DOS COM", "FORMAT PHARLAP" or "FORMAT NOVELL" has
been specified. None of the above executable file formats allow segment
relocation. "%a" identifies the location of the segment relocation.

size of group % s exceeds 64k by %l bytes

The group "%s" has exceeded the maximum size (64K) allowed for agroupin a
16-hit executable by "%l" bytes. Usually, the group is"DGROUP" (the default
data segment) and your application has placed too much datain this group. One
of the following may solve this problem.

1. If you are using the Watcom C or C++ compiler, you can place some
of your datain afar segment by using the "far" keyword when

216 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 2021

MSG 2022

MSG 1023

MSG 2026

MSG 1027

defining data. Y ou can also decrease the value of the data threshold
by using the "zt" compiler option. Any datum whose size exceeds the
value of the data threshold will be placed in afar segment.

2. If you are using the Watcom FORTRAN 77 compiler, you can
decrease the value of the data threshold by using the "dt" compiler
option. Any datum whose size exceeds the value of the data threshold
will be placed in afar segment.

size of segment % s exceeds 64k by %! bytes

The segment "%s" has exceeded the maximum size (64K) for asegment in a
16-bit executable. Thisusualy occursif you are linking a 16-bit application that
has been compiled for asmall code model and the size of the application has
grown in such away that the size of the code segment (*_TEXT") has exceeded
64K. You can compile your application for alarge code model if you cannot
reduce the amount of code in your application.

cannot have a starting address with an imported symbol

When generating an OS/2 executable file, a symbol imported from aDLL
cannot be a start address. When generating a NetWare 386 executable file, a
symbol imported from an NLM cannot be a start address.

no starting addressfound, using % a

The starting address defines the location where execution is to begin and must
be defined by a specia "module end" record in one of the object files linked into
your application. This message isissued if no such record is encountered in
which case a default starting address, namely "%a", will be used. This usually
happens if the linker cannot find the run-time libraries required to link your
application.

redefinition of reserved symbol %s

The linker defines certain reserved symbols. These symbolsare"_edata’,

" end"," OVLTAB_"," OVLSTARTVEC "," OVLENDVEC ",

" _LOVLLDR__"," NOVLLDR_"," SOVLLDR_"," LOVLINIT_",
" NOVLINIT_"and"__SOVLINIT__". Thesymbols"_edata' and"_end"
are defined only if the "DOSSEG" option is specified. Y our application must
not attempt to define these symbols. "%s" identifies the reserved symbol.

redefinition of % Signored

Watcom Linker Diagnostic Messages 217

The WATCOM Linker

The symbol "%S" has been defined by more that one module; the first definition
isused. Thisisonly awarning message. Note that if a symbol is defined more
than once and its address is the same in both cases, no warning will be issued.
This prevents the warning message from being issued when linking FORTRAN
77 modules that contain common blocks.

MSG 1028,2028 % Sis an undefined reference

MSG 2029

MSG 2030

MSG 2031

MSG 1032

The symbol "%S" has been referenced but not defined. Check that the spelling
of the symbol is consistent. If you wish the linker to ignore undefined
references, use the "UNDEFSOK™ option.

premature end of file encountered

This error isissued while processing object files and object modules from
libraries and is caused if the end of the file or module is reached before the
"module end" record is encountered. The probable cause is atruncated object
file.

multiple starting addr esses found

The starting address defines the location where execution is to begin and is
defined by a"module end" record in a particular object file. Thismessageis
issued if more than one object file contains a "module end" record that defines a
starting address.

segment %sisin group %sand group %s

The segment "%s1" has been defined to be in group "%s2" in one module and in
group "%s3" in another module. A segment can only belong to one group.

record (type 0x% x) not processed
An object record type not supported by the linker has been encountered. This

message is issued when linking object modules created by other compilers or
assemblers that create object files with records that the linker does not support.

MSG 2033,3033 directiveerror near '%s

MSG 2034

A syntax error occurred while the linker was processing directives. "%s"
specifies where the error occurred.

% a cannot have an offset with an imported symbol

218 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1038

MSG 2039

MSG 2040

MSG 2041

MSG 2042

MSG 1043

An imported symbol is one that was specified in an "IMPORT" directive.
Imported symbols are defined in Windows or OS2 16-bit DLLs and in Netware
386 NLMs. References to imported symbols must always have an offset value
of 0. If "DosWrite" is an imported symbol, then referencing "DosWritet+2" is
illegal. "%a" definesthe location of theillegal reference.

DEBUG directive appears after object files

Thismessageisissued if the first "DEBUG" directive appears after a"FILE"
directive. A common error isto specify a"DEBUG" directive after the "FILE"
directives in which case no debugging information for those object filesis
generated in the executable file.

ALIGNMENT valuetoo small

The value specified in the "ALIGNMENT" option refers to the alignment of
segmentsin the executable file. For 16-bit Windows or 16-bit OS/2, segments
in the executable file are pointed to by a segment table. An entry in the segment
table contains a 16-bit value which is amultiple of the alignment value.
Together they form the offset of the segment from the start of the segment table.
The smaller the alignment, the bigger the value required in the segment table to
point to the segment. If thisvalue exceeds 64K, then alarger aignment valueis
required to decrease the size that goes in the segment table.

ordinal in IMPORT directive not valid

The specified ordinal in the "IMPORT" directive isincorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

ordinal in EXPORT directive not valid

The specified ordinal in the "EXPORT" directiveisincorrect (e.g., -1). An
ordinal number must be in the range 0 to 65535.

too many |OPL wordsin EXPORT directive

The maximum number of |OPL words for a 16-bit executable is 63.

duplicate exported ordinal

This message isissued for ordinal numbers specified in an "EXPORT" directive
for symbols belonging to DLLs. This messageisissued if an ordinal number is

assigned to two different symbols. A warning isissued and the linker assigns a
non-used ordinal number to the symbol that caused the warning.

Watcom Linker Diagnostic Messages 219

The WATCOM Linker

MSG 1044,2044 exported symbol % s not found

MSG 1045

MSG 1046

MSG 1047

MSG 1048

MSG 2049

MSG 1050

MSG 2051

MSG 2052

This message isissued when generating aDLL or NetWare 386 NLM. An
attempt has been made to define an entry point into aDLL or NLM that does not
exist.

segment attribute defined morethan once

A segment appearing in a"SEGMENT" directive has been given conflicting or
duplicate attributes.

segment name % s not found

The segment name specified in a"SEGMENT" directive has not been defined.
class name % s not found

The class name specified in a"SEGMENT" directive has not been defined.
inconsistent attributes for automatic data segment

This message isissued for Windows or OS/2 16-hit executable files. Two
conflicting attributes were specified for the automatic data segment. For
example, "LOADONCALL" and "PRELOAD" are conflicting attributes. Only
thefirst attribute is used.

invalid STUB file

The stub fileis not avalid executable file. The stub fileisonly used for OS/2
executable files and Windows (both Winl16 and Win32) executablefiles.

invalid DLL specified in OLDLIBRARY option

The DLL specified in an "OLDLIBRARY" option is not avalid dynamic link
library.

STUB file name same as executable file name

When generating an OS/2 or Windows (Winl16, Win32) executable file, the stub
file name must not be same as the executable file name.

relocation at %a not in the same segment

220 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 2053

MSG 1054

MSG 2055

MSG 2056

MSG 3057

MSG 1058

Thismessage is only issued for Windows (Win16), OS/2, Phar Lap, and QNX
executables. A relative fixup must relocate to the same segment. "%a" defines
the location of the fixup.

%a: cannot reach aDLL with arelativerelocation

A reference to asymbol in an OS/2 or Windows 16-bit DLL must not be
relative. "%a" defines the location of the reference.

debugging information incompatible: using line numbersonly

An attempt has been made to link an object file with out-of-date debugging
information.

%a: framemust bethe sameasthetarget in protected mode

Each relocation consists of three components; the location being relocated, the
target (or address being referenced), and the frame (the segment to which the
target is adjusted). In protected mode, the segment of the target must be the
same asthe frame. "%a" defines the location of the fixup. This message does
not apply to 32-bit OS2 and Windows (Win32).

cannot find library member % (%)

Library member "%s2" in library file "%s1" could not be found. This message
isissued if thelibrary file could not be found or the library file did not contain
the specified member.

executable format has been established

This message isissued if there is more than one "FORMAT" directive.

% s option not valid for % s executable

The option "%s1" can only be specified if an executable file whose format is
"%s2" is being generated.

MSG 1059,2059 value for % stoo large

MSG 1060

The value specified for option "%s" exceeds its limit.
valuefor %sincorrect

The value specified for option "%s" is not in the allowable range.

Watcom Linker Diagnostic Messages 221

The WATCOM Linker

MSG 1061

MSG 1062

MSG 2063

MSG 2064

MSG 2065

MSG 2066

MSG 2067

MSG 2068

multiple values specified for REALBREAK

The "REALBREAK" option for Phar Lap executables can only be specified
once.

export and import records not valid for %f

Thismessageisissued if areferenceto aDLL isencountered and the executable
fileformat is not one that supports DLLs. Thefileformat is represented by
"0f".

invalid relocation for flat memory model at %a

A segment relocation in the flat memory model was encountered. "%a" defines
the location of the fixup.

cannot combine 32-bit segmentswith 16-bit segments

A 16-hit segment and a 32-bit segment have been encountered. Mixing object
files created by a 286 compiler and object files created by a 386 compiler isthe
most probable cause of this error.

REALBREAK symbol %snot found

The symbol specified in the "REALBREAK" option for Phar Lap executables
has not been defined.

invalid relativerelocation type for an import at %a

This messageisissued only if a NetWare 386 executable file is being generated.
An imported symbol is one that was specified in an "IMPORT" directive or an
import library. Any reference to an imported symbol must not refer to the
segment of the imported symbol. "%a" defines the location of the reference.

%a: cannot relocate between code and data in Novell formats

This message isissued only if a NetWare 386 executable file is being generated.
Segment relocation is not permitted. "%a" defines the location of the fixup.

absolute segment fixup not valid in protected mode
A reference to an absolute location is not allowed in protected mode. A

protected-mode application is one that is being generated for OS/2, FlashTek’s
DOS extender, Phar Lap’s 386|DOS-Extender, Tenberry Software’s DOS/4G or

222 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1069

MSG 2070

MSG 2071

MSG 2073

MSG 2074

MSG 1076

MSG 1080

DOS/4GW DOS extender, Novell’s NetWare 386 operating system, Windows
NT, or Windows 95. An absolute location is most commonly defined by the
"EQU" assembler directive.

unload CHECK procedure not found

This message isissued only if a NetWare 386 executablefile is being generated.
The symbol specified in the "CHECK" option has not been defined.

START procedure not found

Thismessageisissued only if a NetWare 386 executablefile is being generated.
The symbol specified in the"START" option has not been defined. The default
"START" symbol is"_Prelude".

EXIT procedure not found

Thismessageisissued only if a NetWare 386 executable file is being generated.
The symbol specified in the "EXIT" option has not been defined. The default
"STOP" symbol is"_Stop".

bad Novell file format specified

Aninvalid NetWare 386 executable file format was specified. Vaid formats are
NLM, DSK, NAM and LAN.

circular aliasfound for %s

An attempt was made to circularly define the symbol name specified in an
ALIAS directive. For example:

ALI AS fool=foo02, foo2=fool
% s option multiply specified
The option "%s" can only be specified once.
file%sisa%d-bit object file
A 32-hit attribute was encountered while generating a 16-bit executablefile

format, or a 16-hit attribute was encountered while generating a 32-bit
executable file format.

Watcom Linker Diagnostic Messages 223

The WATCOM Linker

MSG 2082

MSG 2083

MSG 2084

MSG 2086

MSG 1087

MSG 3088

MSG 2089

invalid record type 0x%x

An object record type not recognized by the linker has been encountered. This
message is issued when linking object modules created by other compilers or
assembl ers that create object files with records that the linker does not
recognize.

cannot refer ence address % a from frame % x

When generating a 16-bit executable, the offset of areferenced symbol was
greater than 64K from the location referencing it.

target offset exceeds 64K at %a

When generating a 16-bit executable, the computed offset for a symbol exceeds
64K. "%a" definesthe location of the fixup.

invalid starting addressfor .COM file

The value of the segment of the starting address for a 16-bit DOS"COM" file, as
specified in the map file, must be 0.

stack segment ignored in .COM file

A stack segment must not be defined when generating a 16-bit DOS "COM™" file.
Only asingle physical segment isallowed inaDOS"COM" file. The stack is
allocated from the high end of the physical segment. That is, theinitial value of
SPis hexadecimal FFFE.

virtual memory exhausted

Thismessage is similar to the "dynamic memory exhausted” message. The
DOS-hosted version of the linker has run out of memory trying to keep track of
virtual memory blocks. Virtual memory blocks are allocated from expanded
memory, extended memory and the spill file.

program too large for a .COM file

Thetotal size of a16-bit DOS"COM" program must not exceed 64K. That is,
the total amount of code and data must be less than 64K since only asingle
physical segment isalowed in aDOS "COM" file. You must decrease the size
of your program or generate a DOS "EXE" file.

224 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1090

MSG 2092

MSG 2093

MSG 2094

MSG 1098

MSG 2099

MSG 1101

MSG 1102

redefinition of %sby %signored

The symbol "%s1" has been redefined by module "%s2". This messageisissued
when the size specified in the "NAMELEN" option has caused two symbols to
map to the same symbol. For example, if the symbols routinel and routine2 are
encountered and "OPTION NAMELEN=7" is specified, then this message will
be issued since the first seven characters of the two symbols are identical.
NEWSEGMENT directive appear s befor e obj ect files

The 16-bit "NEWSEGMENT" directive must appear after a"FILE" directive.

cannot open %s

This message is issued when the linker is unable to open afile and is unable to
determine the cause.

i/loerror processing %s

This message isissued when the linker has encountered an i/o error while
processing the file and is unable to determine the cause. This message may be
issued when reading from object and library files, or writing to the executable
and spill file.

Offset option must be a multiple of % dK

The value specified with the "OFFSET" option must be a multiple of 4K (4096)
for Phar Lap and QNX executables and a multiple of 64K (65536) for OS/2 and
Windows 32-bit executables.

symbol nametoo long: %s

The maximum size (approximately 2048) of a symbol has been exceeded.
Reduce the size of the symbol to avoid this error.

invalid incremental information file
Theincremental information file is corrupt or from an older version of the
compiler. The old information file and the executable will be deleted and new

ones will be generated.

object file % s not found for tracing

Watcom Linker Diagnostic Messages 225

The WATCOM Linker

MSG 1103

MSG 1107

MSG 1108

MSG 1109

MSG 1110

MSG 1111

MSG 3114

MSG 1115

A "SYMTRACE" or "MODTRACE" directive contained an object file (namely
%s) that could not be found.

library module % s(%s) not found for tracing

A "SYMTRACE" or "MODTRACE" directive contained an object module
(namely module %s1 in library %s2) that could not be found.

undefined system name: %s

The name %s was referenced in a"SY STEM™ directive but never defined by a
system block definition.

system % s defined morethan once
The name %s has appeared in a system definition block more than once.
OFFSET option islessthan the stack size

For the QNX operating system, the stack is placed at the front of the executable
image and thus the initial load address must leave enough room for the stack.

library membersnot allowed in libfile

Only object filesare allowed ina"LIBFILE" directive. This message will be
issued if amodule from alibrary fileis specified ina"LIBFILE" directive.

error in default system block

The default system block definition (system name "286" for 16-bit applications)
and (system name "386" for 32-bit applications) contains adirective error. The
system name "286" or "386" is automatically referenced by the linker when the
format of the executable cannot be determined (i.e. no "FORMAT" directive
has been specified).

environment name specified incorrectly

This message is specified if the environment variable is not properly enclosed
between two percent (%) characters.

environment name % s not found

The environment variable %s has not been defined in the environment space.

226 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1117

MSG 1118

MSG 2119

MSG 2120

MSG 1121

MSG 3122

MSG 3123

MSG 1124

segment number too high for a movable entry point

The segment number of a moveable segment must not exceed 255 for 16-hit
executables. Reduce the number of segments or use the "PACKCODE" option.

heap sizetoo large

Thismessage isissued if the size of the heap, stack and the default data segment
(group DGROUP) exceeds 64K for 16-bit executables.

wlib import statement incorrect

The "EXPORT" directive allows you to specify alibrary command file. This
command file is scanned for any librarian commands that create import library
entries. Aninvalid command was detected. See the section entitled "The
EXPORT Directive" for the correct format of these commands.

application too largeto run under DOS

Thismessage isissued if the size of the 16-bhit DOS application exceeds 1M.
"%$S has already been exported

The linker has detected an attempt to export a symbol more than once. For
example, a name appearing in more than one "EXPORT" directive will cause
this message to beissued. Also, if you have declared a symbol as an export in
your source and have also specified the same symbol in an "EXPORT" directive,
this message will beissued. This messageisonly awarning.

no FILE directives found

Thismessageisissued if no "FILE" directive has been specified. In other
words, you have specified no object filesto link.

overlaysarenot supported in thisversion of the linker

This version of the linker does not support the creation of overlaid 16-bit
executables.

lazy reference for % S has different default resolutions

A lazy external reference is one which has two resolutions: a preferred one and
adefault one which is used if the preferred oneis not found. In this case, the

Watcom Linker Diagnostic Messages 227

The WATCOM Linker

MSG 1125

MSG 1126

MSG 2127

MSG 3128

MSG 3129

MSG 1130

MSG 3131

MSG 2132

linker has found two lazy references that have the same preferred resolution but
different default resolutions.

multiple aliases found for %S

The linker has found a name which has been aliased to two different symbols.
% s has been modified: doing full relink

The linker has determined that the time stamps on the executable file and
symbolic information file (.sym) are different. Anincremental link will not be
done.

cannot export symbol % S

An attempt was made to export a symbol defined with an absolute address or to
export an imported symbol. It isnot possible to export these symbols with the
"EXPORT" directive.

directive error near beginning of input

The linker detected an error at the start of the command line.
addressinformation too large

The linker has encountered a segment that appears in more than 11000 object
files. An empty segment does not affect thislimit. This can only occur with
WATCOM debugging information. If this message appears, switch to DWARF
debugging information.

%sisan invalid shared nim file

The NLM specified in a"SHAREDNLM" option is not valid.

cannot open spill file: file already exists

All 26 of the DOS-hosted linker’ s possible spill file names arein use. Spill files
can accumulate when linking on a multi-tasking system and the directory in
which the spill fileis created isidentical for each invocation of the linker.

curly brace delimited list incorrect

A list delimited by curly bracesisnot correct. The most likely causeisa
missing right brace.

228 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

MSG 1133

MSG 1134

MSG 1136

MSG 3137

MSG 3138

MSG 3139

MSG 1140

MSG 1141

no realbreak specified for 16-bit code

While generating a Phar Lap executable file, both 16-bit and 32-bit code was
linked together and no "REALBREAK" option has been specified. A warning
message is issued since this may be a potentia problem.

%sisan invalid message file

Thefile specified in a"MESSAGE" option for NetWare 386 executablefilesis
invalid.

relocation to aread/write data segment found at %a

The "RWRELOCCHECK" option for 16-bit Windows (Win16) executables has
been specified and the linker has detected a segment rel ocation to aread/write
data segment.

too many errorsencountered

This message is issued when the number of error messages issued by the linker
exceeds the number specified by the"MAXERRORS" option.

invalid filename’'%¢s

The linker performs a simple filename validation whenever afilenameis
specified to the linker. For example, a directory specification is not avalid
filename.

cannot have both 16-bit and 32-bit object files

It isimpossible to mix 16-bit code and 32-bit code in the same executable when
generating a QNX executable file.

invalid message number

An invalid message number has been specified in a"DISABLE" directive.
virtual function tablerecord for %s mismatched

The linker performs a consistency check to ensure that the C++ compiler has not

generated incorrect virtual function information. If the messageisissued, please
report this problem.

Watcom Linker Diagnostic Messages 229

The WATCOM Linker

MSG 1143 not enough memory to sort map file symbols
There was not enough memory for the linker to sort the symbolsin the "Memory
Map" portion of the map file. Thiswill only occur when the"SORT GLOBAL"
option has been specified.

MSG 1145 % Sisboth purevirtual and non-purevirtual
A function has been declared both as "pure" and "non-pure” virtual.

MSG 2146 %sisan invalid object file

Something was encountered in the object file that cannot be processed by the
linker.

MSG 3147 Ambiguous format specified

Not enough of the FORMAT directive attributes were specified to enable the
linker to determine the executable file format. For example,

FORMAT OS2
will generate this message.
MSG 1148 Invalid segment type specified
The segment type must be one of CODE or DATA.
MSG 1149 Only one debugging format can be specified

The debugging format must be one of WATCOM, Codeview, Dwarf (default),
or Novell. Y ou cannot specify multiple debugging formats.

MSG 1150 file%shas codefor a different processor

An object file has been encountered which contains code compiled for a
different processor (e.g., an Intel application and an Alpha object filg).

MSG 2151 big endian code not supported
Big endian code is not supported by the linker.

MSG 2152 nodictionary found

230 Watcom Linker Diagnostic Messages

Watcom Linker Diagnostic Messages

No symbol search dictionary was found in alibrary that the linker attempted to
process.

MSG 2154 cannot execute %sl: %s2

An attempt by the linker to spawn another application failed. The applicationis
specified by "%s1" and the reason for the failure is specified by "%s2".

MSG 2155 relocation at % ato an improperly aligned tar get

Some relocations in Alpha executables require that the object be aligned on a4
byte boundary.

MSG 2156 OPTION INCREMENTAL must be one of thefirst directives specified

The option must be specified before any option or directive which modifies the
linker’s symbol table (e.g., IMPORT, EXPORT, REFERENCE, ALIAS).

MSG 3157 no code or data present

The linker requires that there be at least 1 byte of either code or datain the
executable.

MSG 1158 problem adding resour ce infor mation
Theresourcefileisinvalid or corrupt.

MSG 3159 incremental linking only supports DWARF debugging infor mation
When OPTION INCREMENTAL is used, you cannot specify non-Dwarf
debugging information for the executable. Y ou must specify DEBUG DWARF
when requesting debugging information.

MSG 3160 incremental linking does not support dead code elimination

When OPTION INCREMENTAL is used, you cannot specify OPTION
ELIMINATE.

MSG 1162 relocationson iterated data not supported
An object file was encountered that contained an iterated data record that

requiresrelocation. Thisis most commonly caused by a module coded in
assembly language.

Watcom Linker Diagnostic Messages 231

The WATCOM Linker

MSG 1163 module has not been compiled with the" zv" option
When OPTION VFREMOVAL isused, all object files must be compiled with
the"zv" option. The linker has detected an object file that has not been
compiled with this option.

MSG 3164 incremental linking does not support virtual function removal

When OPTION INCREMENTAL is used, you cannot also specify OPTION
VFREMOVAL.

MSG 1165 resourcefile % stoo big

The resource file specified in OPTION RESOURCE was too big to fit inside the
QNX executable. The maximum size is approximately 32000 bytes.

MSG 2166 both %sl and % s2 marked as starting symbols

If the linker seesthat there is more than one starting address specified in the
program and they have symbol names associated with them, it will emit this
error message. If there is more than one starting address specified and at |east
one of them is unnamed, it will issue message 2030.

232 Watcom Linker Diagnostic Messages

Index

32-hit Windows 3.x executables 15
32-bit Windows 95 DLLs 16

32-bit Windows 95 executables 16
386|DOS-Extender 191

directive 30
A
1

ALIASdirective 22

ALIGNMENT option 23
16-bit DOS.COM 8 ANONYMOUSEXPORT directive 24
16-bit DOS executables 8 apostrophes 21, 68
16-bit executables 8 applications _
16-bit OS/2 DLLS 9 creating for 16-bit OS2 181
16-bit OS/2 executables 9 creating for 32-bit 052 181
16-bit QNX executables 9 creating for 32-bit Windows 207
16-bit Windows 3.x DLLs 10 creating for DOS 165
16-bit Windows 3.x executables 10 creating for DOS/4G 181

creating for ELF 171

creating for FlashTek 181

creating for NetWare 386 175

3 creating for Phar Lap 286|Dos-Extender 181
creating for Phar Lap 386|Dos-Extender 189
creating for QNX 195

creating for Win32 207

32-bit AutoCAD ADI executables 11 creating for Windows 3.x 199
32-bit AutoCAD ADS executables 11 creating for Windows NT 207
32-bit DOS/AGW executables 12 AR-format 3

32-hit executables 11 ARTIFICIAL option 26

32-bit FlashTek executables 12
32-bit Netware NLMs 13
32-bit OS2 DLLs 14

32-bit OS/2 executables 13 B
32-bhit OS/2 PM executables 14
32-bit Phar Lap executables 14
32-bit QNX executables 15 o
30-bit TNT executables 15 blanksin file names 21
32-bit Win NT character-mode executables 17

32-bit Win NT DLLs 17

32-bit Win NT windowed executables 17

32-bit Windows 3.x DLLs 16

233

Index

CACHE option 27
CALLBUFS runtime option 134
CASEEXACT option 28
CHECK option 29
Codeview 34
COFF 3
command line format

WLINK 5, 165, 171, 175, 181, 189, 195, 199,

207

comment (#) directive 30
COMMIT directive 31
Compactor 34
CONSOLE runtime option 132
COPYRIGHT option 32
CUSTOM option 33
Cv4 34
CVPACK 34-35
CVPACK option 34

DBCS
Chinese 77
Japanese 77
Korean 77
dead code elimination 47, 129, 142
DEBUG directive 35
DEBUG options
ALL 36
CODEVIEW 35
DWARF 35
LINES 36
LOCALS 36
NOVELL 36
ONLYEXPORTS 36-37, 40

234

REFERENCED 37

TYPES 36

WATCOM 35
debugging information

al 39

for NetWare 386 debugger 39

global symbol 36, 39

line numbering 36-37

local symbol 36, 38

NetWare 386 global symbol 36

strip from "EXE" file 41

typing 36, 38
Debugging Information Compactor 34-35
default directivefile 7, 19, 28, 155

wlink.Ink 28
DESCRIPTION option 42
directives 19

30

ALIAS 22

ANONYMOUSEXPORT 24

comment 30

COMMIT 31

DEBUG 35

DISABLE 43

ENDLINK 48

EXPORT 50

FILE 54

FORMAT 56

IMPORT 68

include 71

LANGUAGE 77

LIBFILE 78

LIBPATH 80

LIBRARY 82

MODFILE 95

MODTRACE 96

MODULE 97

NAME 99

NEWSEGMENT 102

OPTION 114

OPTLIB 115

PATH 122

REFERENCE 129

RUNTIME 132

Index

SEGMENT 138
SORT 143
STARTLINK 146
SYMTRACE 151
SYSTEM 153
DISABLE directive 43
DOS applications
creating 165
DOS/4G applications
creating 181
DOSSEG option 45
DOSSTYLE runtime option 133

_edatalinker symbol 46
ELF 3
ELF applications
creating 171
ELIMINATE option 47
_end linker symbol 46
ENDLINK directive 48
environment variables
LIB 83, 105, 116
LIBDIR 19
PATH 7,19, 28, 148, 155
tmp 168, 174, 179, 186, 193, 205, 212
TMPDIR 198
WATCOM 7, 19, 28, 155
errors 43, 213
executable formats 3
EXIT option 49
__export 52
EXPORT directive 50

fatal errors 43, 213
FILE directive 54
FlashTek applications
creating 181
FORMAT directive 56

general directives/options 19

HEAPSIZE option 64
HELP option 65

host 4

host operating system 4

!

IMPFILE option 66

IMPLIB option 67

import definitions 184, 203, 210
IMPORT directive 68

import library 66-67, 185, 204, 211
import library command file 66
include directive 71

incremental linking 74

235

Index

INCREMENTAL option 74 MAXERRORS option 91
Intel OMF 3 MAXIBUF runtime option 134
internal relocation 76, 158 MAXREAL runtime option 133
INTERNALRELOCS option 76 memory layout 45, 167, 173, 178, 185, 192, 197,
invoking Watcom Linker 5, 165, 171, 175, 181, 204, 211
189, 195, 199, 207 memory requirements 168, 174, 179, 186, 193,
ISTKSIZE runtime option 134 198, 205, 212
message
1014 215
1019 216
L 1023 217
1027 217
1028,2028 218
o 1032 218
LANGUAGE options 1043 219
CHINESE 77 1044,2044 220
JAPANESE 77 1045 220
KOREAN 77 1046 220
LIB environment variable 83, 105, 116 1047 220
LIBDIR environment variable 19 1048 220
_edata 46 1062 222
__end 46 1069 223
linking notation 20 1076 223
1087 224
1090 225
1098 225
M 1101 225
1102 225
1103 226
mangled namesin C++ 87, 143 1107226
MANGLEDNAMES option 87 1108 226
MANYAUTODATA option 88 1109 226
map file 89 1110 226
MAP option 89 1111 226
MAXDATA option 90 1115 226
1117 227

236

Index

1118
1121
1124
1125
1126
1130
1133
1134
1136
1140
1141
1143
1145
1148
1149
1150
1158
1162
1163
1165
2002
2008

2010,3010 215

2011
2012
2015
2016
2017
2018
2020
2021
2022
2026
2029
2030
2031

2033,3033 218

2034
2039
2040
2041
2042
2049
2051

227
227
227
228
228
228
229
229
229
229
229
230
230
230
230
230
231
231
232
232
214
214

215
215
215
216
216
216
216
217
217
217
218
218
218

218
219
219
219
219
220
220

2052
2053
2055
2056
2063
2064
2065
2066
2067
2068
2070
2071
2073
2074
2082
2083
2084
2086
2089
2092
2093
2094
2099
2119
2120
2127
2132
2146
2151
2152
2154
2155
2156
2166
3009
3013
3057
3088
3114
3122
3123
3128
3129
3131

220
221
221
221
222
222
222
222
222
222
223
223
223
223
224
224
224
224
224
225
225
225
225
227
227
228
228
230
230
230
231
231
231
232
214
215
221
224
226
227
227
228
228
228

237

Index

3137 229

3138 229

3139 229

3147 230

3157 231

3159 231

3160 231

3164 232
MESSAGES option 92
Microsoft OMF 3
MINDATA option 93
MINIBUF runtime option 134
MINREAL runtime option 133
MODFILE directive 95
MODNAME option 94
MODTRACE directive 96
MODULE directive 97

MS2WLINK command 168, 187, 205

MULTILOAD option 98

NAME directive 99
NAMELEN option 100
NATIVE runtime option 132
NetWare 386 applications
creating 175
NetWare 386 debugger 39
NEWFILES option 101
NEWSEGMENT directive 102
NISTACK runtime option 134
NLMFLAGS option 103
NOAUTODATA option 104
NODEFAULTLIBS option 105
NOREDEFSOK option 127
NOREL OCS option 106
NOSTDCALL option 107
notation 20
NOUNDEFSOK option 159

238

OBJALIGN option 108
OFFSET option 110
OLDLIBRARY option 109
OMF 3
OMF library 3
ONEAUTODATA option 113
operating system
host 4
OPTION directive 114
options
ALIGNMENT 23
ARTIFICIAL 26
CACHE 27
CASEEXACT 28
CHECK 29
COPYRIGHT 32
CUSTOM 33
CVPACK 34
DESCRIPTION 42
DOSSEG 45
ELIMINATE 47
EXIT 49
HEAPSIZE 64
HELP 65
IMPFILE 66
IMPLIB 67
INCREMENTAL 74
INTERNALRELOCS 76
LINEARRELOCS 85
LONGLIVED 86
MANGLEDNAMES 87
MANYAUTODATA 88
MAP 89
MAXDATA 90
MAXERRORS 91
MESSAGES 92
MINDATA 93
MODNAME 94

Index

MULTILOAD 98 creating 181

NAMELEN 100 0S/2 32-bit applications
NEWFILES 101 creating 181

NLMFLAGS 103 0OS/2 Dynamic Link Libraries 184
NOAUTODATA 104 OS/2 program modules 184
NODEFAULTLIBS 105 OS2 runtime option 132
NOREDEFSOK 127 OSDOMAIN option 117
NORELOCS 106 OSNAME option 119

NOSTDCALL 107
NOUNDEFSOK 159
OBJALIGN 108
OFFSET 110 P
OLDLIBRARY 109
ONEAUTODATA 113
OSDOMAIN 117

OSNAME 119 PACKCODE option 120

PACKCODE 120 PACKDATA option 121

PACKDATA 121 PATH directive 122

PRIVILEGE 124 PATH environment variable 7, 19, 28, 148, 155
PROTMODE 125 PE format executable 58
PSEUDOPREEMPTION 118 Phar Lap 286|Dos-Extender applications
QUIET 126 creating 181 o
REDEFSOK 127 Phar Lap 386|Dos-Extender applications
REENTRANT 128 creating 189

RESOURCE 130 Phar Lap OMF-386 3
RWRELOCCHECK 136 Phar Lap TNT 58

SCREENNAME 137 PL format executable 58

SHARELIB 141 POSIX runtime option 132
SHOWDEAD 142 prlv_llege

STACK 144 ring 0 135

START 145 ring 3 135

STATICS 147 PRIVILEGE option 124

STUB 148 PRIVILEGED runtime option 135
SYMFILE 149 PROTMODE option 125
SYNCHRONIZE 152 PSEUDOPREEMPTION option 118
THREADNAME 157 punctuation characters 21

TOGGLERELOCS 158
UNDEFSOK 159
VERBOSE 160
VERSION 161 Q
VFREMOVAL 162
XDCDATA 163
OPTLIB directive 115
0S/2 16-bit applications

QNX applications

239

Index

creating 195
QUIET option 126 S
R SCREENNAME option 137
SEGMENT directive 138

segment ordering 45, 167, 173, 178, 185, 192,

REALBREAK runtime option 134 197,204, 211
REDEFSOK option 127 SHARELIB option 141
REENTRANT option 128 SHOWDEAD option 142
REFERENCE directive 129 SORT directive 143
relocation space character 21
internal 76, 158 special characters 21
resource file 130 STACK option 144
RESOURCE option 130 START option 145
response files STARTLINK.dlrectlve 146
conversion 168, 187, 205 STATICS option 147
ring 0 135 __stdcall _107
ring3 135 STUB optlon 148
running in 32-bit protected mode 191 symbol file 149
RUNTIME directive 132 SYMFILE option 149
RUNTIME options SYMTRACE dlrectl\{e 151
CALLBUFS 134 SYNCHRONIZE option 152
CONSOLE 132 SYSTEM directive 5, 153
DOSSTYLE 133 system name 153
ISTKSIZE 134
MAXIBUF 134
MAXREAL 133
MINIBUF 134 T
MINREAL 133
NATIVE 132
NISTACK 134 THREADNAME option 157
Sgél >1<32132 tmp environment variable 168, 174, 179, 186,
193, 205, 212
PRIVILEGED 135 TMPDIR environment variable 198
REALBREAK 134 TNT DOS extender 58
DIERIVIESGED 135 TOGGLERELOCS option 158
WINDOWS 132

runtime version option 132
RWRELOCCHECK option 136

240

Index

UNDEFSOK option 159

UNPRIVILEGED runtime option 135
USE16 segments 192

usemsg 131

using environment variablesin directives 19

VERBOSE option 160
VERSION option 161
VFREMOVAL option 162
virtual functions 142, 162

W

warnings 43, 213
Watcom C/C++ options

zm 47
WATCOM environment variable 7, 19, 28, 155
Win16 applications

creating 199
Win16 Dynamic Link Libraries 202
Win16 program modules 202
Win32 applications

creating 207
Win32 Dynamic Link Libraries 209
Win32 program modules 209
window function 50, 72
Windows 3.x applications

creating 199
Windows 32-bit applications

creating 207
Windows NT applications
creating 207
WINDOWS runtime option 132
WLINK
command lineformat 5, 165, 171, 175, 181,
189, 195, 199, 207
WLINK command line
invoking WLINK 5, 165, 171, 175, 181, 189,
195, 199, 207
WLINK notation 20
wlink.Ink
default directivefile 7, 19, 28, 155
wlsystem.Ink
directivefile 7, 19, 28, 155
WSTRIP 39, 41
WSTRIP command 41

x32r 12
x32rv 12
XDCDATA option 163

zm compiler option (Watcom C/C++) 47

241

